1
|
Crompton JL, Jenkins TC, Rowe SM, Donohoe TJ. Hydrogen-Borrowing-Based Methods for the Construction of Quaternary Stereocentres. Angew Chem Int Ed Engl 2025:e202423179. [PMID: 39786331 DOI: 10.1002/anie.202423179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Compounds containing quaternary stereocentres are a valuable motif in biologically active compounds. Herein we present our strategy to utilise the hydrogen borrowing manifold to access α-quaternary ketones via a tandem acceptorless dehydrogenation-cyclisation cascade. This new application of the methodology results in the formation of five- and six-membered carbocycles with a high degree of diastereoselectivity. Interestingly, benzylic alcohol substrates behaved anomalously and eliminated sulfinate in situ to give a set of rearranged α-quaternary ketone products.
Collapse
Affiliation(s)
- Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Timothy C Jenkins
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Sam M Rowe
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Khamis N, Zheng Y, Diamantakis MN, Clarkson GJ, Liu J, Wills M. Regio- and Enantioselective Asymmetric Transfer Hydrogenation of One Carbonyl Group in a Diketone through Steric Hindrance. J Org Chem 2024; 89:2759-2763. [PMID: 38308650 PMCID: PMC10877611 DOI: 10.1021/acs.joc.3c01950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
On the basis of steric hindrance, one carbonyl group in a diketone can be reduced in a regioselective manner, with high enantioselectivity. The methodology can be extended to ketones with varied length of hydrocarbon chain spacing, and the products can be converted by oxidation to hydroxy esters or lactones without loss of enantiopurity.
Collapse
Affiliation(s)
- Noha Khamis
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, Faculty of Science, University
of Alexandria, Alexandria, Egypt
| | - Ye Zheng
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Guy J. Clarkson
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Jie Liu
- Department
of Physics, The University of Warwick, Coventry CV4 7AL, U.K.
| | - Martin Wills
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Gómez-Suárez A, Neumann CN. Stereochemistry in All Its Shapes and Forms: The 56 th Bürgenstock Conference. Angew Chem Int Ed Engl 2023; 62:e202309468. [PMID: 37590448 DOI: 10.1002/anie.202309468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Acknowledging the crucial role of stereochemistry in fields as diverse as total synthesis, synthetic methodology, spectroscopy, and the study of the origin of life, the 56th SCS Conference on Stereochemistry, better known as the BÃ1/4rgenstock Conference, brought together a diverse range of chemistry expertise in Brunnen, Switzerland.
Collapse
Affiliation(s)
- Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Constanze N Neumann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Crompton JL, Frost JR, Rowe SM, Christensen KE, Donohoe TJ. Synthesis of Cyclopropanes via Hydrogen-Borrowing Catalysis. Org Lett 2023. [PMID: 37428545 PMCID: PMC10367074 DOI: 10.1021/acs.orglett.3c01768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cyclopropanes are highly useful motifs that are often incorporated into drug candidates to improve potency, metabolic stability, or pharmacokinetic properties. An expedient method for the α-cyclopropanation of ketones using hydrogen borrowing (HB) catalysis is described. The transformation occurs via HB alkylation of a hindered ketone with subsequent intramolecular displacement of a pendant leaving group affording the cyclopropanated product. The leaving group can be installed in either the ketone or alcohol component of the HB system, giving access to α-cyclopropyl ketones via two complementary approaches. Conversion to the corresponding carboxylic acids can be achieved in a simple two-step sequence to afford synthetically useful 1,1-substituted spirocyclopropyl acid building blocks.
Collapse
Affiliation(s)
- Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - James R Frost
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Sam M Rowe
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Kirsten E Christensen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
5
|
Pawar G, Ghouse SM, Kar S, Chelli SM, Dannarm SR, Gour J, Sonti R, Nanduri S. SmI2-mediated C-alkylation of Ketones with Alcohols in Microwave conditions: A Novel Route to Alkylated Ketones. Chem Asian J 2022; 17:e202200041. [PMID: 35191612 DOI: 10.1002/asia.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Indexed: 11/08/2022]
Abstract
A novel protocol is developed towards the preparation of alkylated ketones from alcohols in presence of catalytic amount of SmI 2 and base with the elimination of water as a single by-product under microwave irradiation conditions. Furthermore, applicability of this methodology to the synthesis of Donepezil and late-stage functionalization in Pregnenolone is also reported. Successful application of this methodology in Friedländer quinolone synthesis using 2-aminobenzyl alcohol and various acetophenones expand the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Gaurav Pawar
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Shaik Mahammad Ghouse
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Swayamsiddha Kar
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Sai Manohar Chelli
- Sri Satya Sai Institute of Higher Learning: Sri Sathya Sai University, Department of chemistry, INDIA
| | - Srinivas Reddy Dannarm
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Jitendra Gour
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Chemical Sciences, INDIA
| | - Rajesh Sonti
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Pharmaceutical analysis, INDIA
| | - Srinivas Nanduri
- National Institute of Pharmaceutical Education & Research, Process Chemistry, Balanagar, 500037, Hyderabad, INDIA
| |
Collapse
|
6
|
|