1
|
Yuan G, Wang Y, Niu H, Ma Y, Song J. Isolation, purification, and physicochemical characterization of Polygonatum polysaccharide and its protective effect against CCl 4-induced liver injury via Nrf2 and NF-κB signaling pathways. Int J Biol Macromol 2024; 261:129863. [PMID: 38307425 DOI: 10.1016/j.ijbiomac.2024.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
This study aimed to provide scientific evidence that Polygonatum polysaccharide can be developed as a dietary supplement and medication for treating liver injuries. A water-soluble polysaccharide (PSP-N-c-1), with an average molecular weight of 3.45 kDa, was isolated and purified from the water extract of Polygonatum using DEAE cellulose column chromatography, CL-6B agarose gel chromatography, and Sephadex G100 chromatography. High-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy analyses revealed that PSP-N-c-1 might be linear α-(1 → 4)-glucans with α-Glcp residues linked to the backbone at C-6. In vitro experiments revealed that PSP-N-c-1 exhibited protective effects against CCl4-induced damage in HepG2 cells. In vivo experiments demonstrated that PSP-N-c-1 exhibited a hepatoprotective effect by enhancing antioxidant enzyme activity, inhibiting lipid peroxidation, and reducing the activity of pro-inflammatory mediators. Besides, PSP-N-c-1 could attenuate oxidative stress and inflammatory responses by activating the Nrf2-mediated signaling pathways and regulating the TLR4-mediated NF-κB signaling pathways. These findings demonstrated that PSP-N-c-1 may serve as a supplement for alleviating chemical liver damage.
Collapse
Affiliation(s)
- Guangxin Yuan
- School of Pharmacy, Beihua University, Jilin 132013, China; Key Laboratory for the Structure and Function of Polysaccharides in Traditional Chinese Medicine (Administration of Traditonal Chinese Medicine of JiLin Province), Beihua University, Jilin 132013, China
| | - Yutong Wang
- School of Pharmacy, Beihua University, Jilin 132013, China
| | - Hongmei Niu
- School of Pharmacy, Beihua University, Jilin 132013, China
| | - Yue Ma
- School of Pharmacy, Beihua University, Jilin 132013, China
| | - Jianxi Song
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Jilin 132013, China; Key Laboratory for the Structure and Function of Polysaccharides in Traditional Chinese Medicine (Administration of Traditonal Chinese Medicine of JiLin Province), Beihua University, Jilin 132013, China.
| |
Collapse
|
2
|
Yang M, Rong L, Zhang X, Li G, Wang Q, Li C, Xiao Y, Wei L, Bi H. Hirsutella sinensis mycelium polysaccharides attenuate the TGF-β1-induced epithelial-mesenchymal transition in human intrahepatic bile duct epithelial cells. Int J Biol Macromol 2024; 254:127834. [PMID: 37926312 DOI: 10.1016/j.ijbiomac.2023.127834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-β1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-β1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-β/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.
Collapse
Affiliation(s)
- Mengmeng Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Medical college, Qinghai University, Xining 810001, China
| | - Lin Rong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingfang Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Medical college, Qinghai University, Xining 810001, China
| | - Guoqiang Li
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiannan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China.
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
3
|
Huang X, Ai C, Yao H, Zhao C, Xiang C, Hong T, Xiao J. Guideline for the extraction, isolation, purification, and structural characterization of polysaccharides from natural resources. EFOOD 2022. [DOI: 10.1002/efd2.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Chao Ai
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Chengang Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Chunhong Xiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology Guangdong Ocean University Zhanjiang China
| | - Tao Hong
- State Key Laboratory of Food Science and Technology, China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| |
Collapse
|
4
|
Yao HYY, Wang JQ, Yin JY, Nie SP, Xie MY. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res Int 2021; 143:110290. [PMID: 33992390 DOI: 10.1016/j.foodres.2021.110290] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/31/2022]
Abstract
Nuclear magnetic resonance (NMR) has been widely used as an analytical chemistry technique to investigate the molecular structure and conformation of polysaccharides. Combined with 1D spectra, chemical shifts and coupling constants in both homo- and heteronuclear 2D NMR spectra are able to infer the linkage and sequence of sugar residues. Besides, NMR has also been applied in conformation, quantitative analysis, cell wall in situ, degradation, polysaccharide mixture interaction analysis, as well as carbohydrates impurities profiling. This review summarizes the principle and development of NMR in polysaccharides analysis, and provides NMR spectra data collections of some common polysaccharides. It will help to promote the application of NMR in complex polysaccharides of biochemical interest, and provide valuable information on commercial polysaccharide products.
Collapse
Affiliation(s)
- Hao-Ying-Ye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
5
|
Jeffrey R, Singh G, Plaza-Alexander PG, Singh N, Goodman JM, Bacchi A, Punzo F. Synthesis of 2,3-O-benzyl-ribose and xylose and their equilibration. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.tetasy.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|