1
|
Nicolaou KC, Pan S, Shelke Y, Ye Q, Das D, Rigol S. A Highly Convergent Total Synthesis of Norhalichondrin B. J Am Chem Soc 2021; 143:20970-20979. [PMID: 34851106 DOI: 10.1021/jacs.1c10539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new synthetic strategy for the total synthesis of norhalichondrin B featuring a highly convergent approach and our recently disclosed reverse approach for the synthesis of cyclic ether structural motifs is disclosed. Resulting in the shortest route to norhalichondrin B disclosed thus far, the reported total synthesis was achieved through the synthesis of two almost equally complex fragments whose coupling and short elaboration sequence featured an essential epimerization of the C16 stereocenter occurring concurrently with a simple acid-induced deprotection, a tactic based on a prior study along the synthetic route. This unprecedented strategy within the halichondrin family of natural products could find practical application to the synthesis of other more or less complex natural or designed halichondrin analogues.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Saiyong Pan
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yogesh Shelke
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qiuji Ye
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Dipendu Das
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Rigol
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Gold(I)-Catalyzed Domino Reaction for Furopyrans Synthesis. Molecules 2020; 25:molecules25214976. [PMID: 33121149 PMCID: PMC7663467 DOI: 10.3390/molecules25214976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/04/2022] Open
Abstract
We report herein an efficient synthesis of furopyran derivatives through a gold(I)-catalyzed domino reaction. The cascade reaction starts with two regioselective cyclizations, a 5-endo-dig and a 8-endo-dig, followed with a Grob-type fragmentation and a hetero Diels–Alder. The obtained furopyran derivatives contain fused and spiro-heterocycles. During this one-pot process, four bonds and four controlled stereogenic centers including a quaternary center are formed.
Collapse
|
3
|
Kadam VD, Rao B SS, Mahesh SK, Chakraborty M, Vemulapalli SPB, Dayaka SN, Sudhakar G. Stereoselective Access to the Core Structure of Macroline-Type Indole Alkaloids: Total Synthesis of Macroline and Alstomicine. Org Lett 2018; 20:4782-4786. [PMID: 30067369 DOI: 10.1021/acs.orglett.8b01921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid synthesis of the pentacyclic core structure of macroline-type indole alkaloids, and its application in the total synthesis of macroline and alstomicine is described. The core structure was accomplished in a highly stereocontrolled manner via two key steps, Ireland-Claisen rearrangement and Pictet-Spengler cyclization, commencing from a readily available starting material l-tryptophan, which obviated the need of a particular chiral source as an external catalyst, reagent, or internal auxiliary.
Collapse
Affiliation(s)
- Vilas D Kadam
- Academy of Scientific & Innovative Research (AcSIR) , New Delhi , India
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the family Apocynaceae. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids and the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles, has been presented, which involves application of the asymmetric Pictet-Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since 2000.
Collapse
Affiliation(s)
- Ojas A. Namjoshi
- RTI International, Center for Drug Design and Discovery, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - James M. Cook
- University of Wisconsin-Milwaukee, Chemistry Department, 3210 E. Cramer Street, Milwaukee, WI 53211, USA
| |
Collapse
|
5
|
Hirasawa Y, Arai H, Rahman A, Kusumawati I, Zaini NC, Shirota O, Morita H. Voacalgines A–E, new indole alkaloids from Voacanga grandifolia. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Monoterpenoid indole alkaloids from Alstonia yunnanensis and their cytotoxic and anti-inflammatory activities. Molecules 2012; 17:13631-41. [PMID: 23159924 PMCID: PMC6268798 DOI: 10.3390/molecules171113631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022] Open
Abstract
The 80% ethanol extract of Alstonia yunnanensis afforded five new monoterpenoid indole alkaloids: 11-hydroxy-6,7-epoxy-8-oxo-vincadifformine (1), 14-chloro-15-hydroxy-vincadifformine (2), perakine N4-oxide (3), raucaffrinoline N4-oxide (4), and vinorine N1,N4-dioxide (5), together with three known compounds: 11-methoxy-6,7-epoxy-8-oxo-vincadifformine (6), vinorine N4-oxide (7) and vinorine (8). The structures of the isolated compounds were established based on 1D and 2D (1H-1H-COSY, HMQC, HMBC, and ROESY) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxic potential against seven tumor cell lines and anti-inflammatory activities. Compounds 3, 4 and 7 exhibited weak cytotoxicity against the tested cell lines and selective inhibition of Cox-2 (>85%).
Collapse
|
7
|
Lim SH, Tan SJ, Low YY, Kam TS. Lumutinines A-D, linearly fused macroline-macroline and macroline-sarpagine bisindoles from Alstonia macrophylla. JOURNAL OF NATURAL PRODUCTS 2011; 74:2556-2562. [PMID: 22148233 DOI: 10.1021/np200730j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four new linearly fused bisindole alkaloids, lumutinines A-D (1-4), were isolated from the stem-bark extract of Alstonia macrophylla. Lumutinines A (1) and B (2) represent the first examples of linear, ring A/F-fused macroline-macroline-type bisindoles, while lumutinines C (3) and D (4) were constituted from the union of macroline and sarpagine moieties. A reinvestigation of the stereochemical assignment of alstoumerine (8) by NMR and X-ray diffraction analyses indicated that the configuration at C-16 and C-19 required revision.
Collapse
Affiliation(s)
- Siew-Huah Lim
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
8
|
Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS. Angustilobine and andranginine type indole alkaloids and an uleine-secovallesamine bisindole alkaloid from Alstonia angustiloba. PHYTOCHEMISTRY 2011; 72:2212-2218. [PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/05/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
Collapse
Affiliation(s)
- Wai-Foong Ku
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
9
|
Macrodasines A–G, macroline indole alkaloids incorporating fused spirocyclic tetrahydrofuran–tetrahydrofuran and tetrahydrofuran–tetrahydropyran rings. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Tan SJ, Low YY, Choo YM, Abdullah Z, Etoh T, Hayashi M, Komiyama K, Kam TS. Strychnan and secoangustilobine A type alkaloids from Alstonia spatulata. Revision of the C-20 configuration of scholaricine. JOURNAL OF NATURAL PRODUCTS 2010; 73:1891-1897. [PMID: 21043460 DOI: 10.1021/np100552b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A total of 25 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia spatulata, of which five are new alkaloids of the strychnan type (alstolucines A-E, 1-5) and the other, a new alkaloid of the secoangustilobine A type (alstolobine A, 6). The structures of these alkaloids were established using NMR and MS analysis and, in the case of alstolucine B (2), also confirmed by X-ray diffraction analysis. A reinvestigation of the stereochemical assignment of scholaricine (13) by NMR and X-ray analyses indicated that the configuration at C-20 required revision. Alkaloids 1, 2, 6, 7, 9, 10, and 13 reversed multidrug resistance in vincristine-resistant KB cells.
Collapse
Affiliation(s)
- Shin-Jowl Tan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tan SJ, Choo YM, Thomas NF, Robinson WT, Komiyama K, Kam TS. Unusual indole alkaloid–pyrrole, –pyrone, and –carbamic acid adducts from Alstonia angustifolia. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.07.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Gan CY, Etoh T, Hayashi M, Komiyama K, Kam TS. Leucoridines A-D, cytotoxic Strychnos-Strychnos bisindole alkaloids from Leuconotis. JOURNAL OF NATURAL PRODUCTS 2010; 73:1107-1111. [PMID: 20515042 DOI: 10.1021/np1001187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Four new bisindole alkaloids of the Strychnos-Strychnos type, leucoridines A-D (1-4), were isolated from the stem-bark extract of Leuconotis griffithii. Alkaloids 1-4 showed moderate cytotoxicity against drug-sensitive and vincristine-resistant human KB cells.
Collapse
Affiliation(s)
- Chew-Yan Gan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
13
|
Gan CY, Low YY, Etoh T, Hayashi M, Komiyama K, Kam TS. Leuconicines A-G and (-)-eburnamaline, biologically active strychnan and eburnan alkaloids from Leuconotis. JOURNAL OF NATURAL PRODUCTS 2009; 72:2098-2103. [PMID: 20035556 DOI: 10.1021/np900576b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Seven new indole alkaloids of the Strychnos type, leuconicines A-G (1-7), and a new eburnan alkaloid, (-)-eburnamaline (8), were isolated from the stem-bark extract of two Malayan Leuconotis species. The structures of these alkaloids were established using NMR and MS analysis and in the case of 8 also by partial synthesis. Alkaloids 1-5 reversed multidrug resistance in vincristine-resistant KB cells.
Collapse
Affiliation(s)
- Chew-Yan Gan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, Iwaki Meisei University, 5-5-1 Iino, Chuo-dai, Iwaki, Fukushima 970-8551, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Gan CY, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam TS. Leucophyllidine, a cytotoxic bisindole alkaloid constituted from the union of an eburnan and a new vinylquinoline alkaloid. Org Lett 2009; 11:3962-5. [PMID: 19708704 DOI: 10.1021/ol9016172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cytotoxic bisindole alkaloid possessing an unprecedented structure constituted from the union of an eburnan half and a novel vinylquinoline alkaloid has been isolated from Leuconotis griffithii. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway to the novel quinolinic coupling partner is presented from an Aspidosperma precursor.
Collapse
Affiliation(s)
- Chew-Yan Gan
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
15
|
Gan CY, Kam TS. Leucolusine, a tetracyclic alkaloid with a novel ring system incorporating an oxindole moiety and fused piperidine-tetrahydrofuran rings. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Kam TS, Tan SJ, Ng SW, Komiyama K. Bipleiophylline, an unprecedented cytotoxic bisindole alkaloid constituted from the bridging of two indole moieties by an aromatic spacer unit. Org Lett 2008; 10:3749-52. [PMID: 18683934 DOI: 10.1021/ol801354s] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cytotoxic bisindole alkaloid possessing an unprecedented structure in which two indole moieties are bridged by an aromatic spacer unit has been isolated from Alstonia angustifolia. The structure was established by analysis of the spectroscopic data and confirmed by X-ray diffraction analysis. A possible biogenetic pathway from pyrocatechuic acid and pleiocarpamine is presented.
Collapse
Affiliation(s)
- Toh-Seok Kam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
17
|
Somei M, Yamada F. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2005; 22:73-103. [PMID: 15692618 DOI: 10.1039/b316241a] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers newly isolated simple indole alkaloids, structure determinations, total syntheses and biological activities reported in the literature in 2003.
Collapse
Affiliation(s)
- Masanori Somei
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | |
Collapse
|
18
|
Unusual spirocyclic macroline alkaloids, nitrogenous derivatives, and a cytotoxic bisindole from Alstonia. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.03.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|