1
|
Szaniszló S, Schlosser G, Farkas V, Perczel A. Direct Continuous Flow Synthesis of Two Difficult Polypeptides Using β-Cyclodextrins. J Org Chem 2024; 89:18039-18046. [PMID: 39611495 DOI: 10.1021/acs.joc.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This study focuses on investigating the use of β-cyclodextrin (β-CyD) derivatives as additives in continuous flow peptide synthesis, with particular emphasis on challenging sequences such as the Jung-Redemann decapeptide and the 42-residue amyloid β polypeptide [Aβ(1-42)]. The efficacy of the OH-free β-CyD and two of its derivatives (Ac-β-CyD and HP-β-CyD) is compared with alternative, state-of-the-art synthetic methods, including the widely used and recently improved pseudoproline monomer technique, e.g., Ser(ΨPro). Our results show that the use of β-CyD as an additive results in a significant (8-19%) increase in the purity of the crude polypeptide compared to that determined by our reference method. The chromatograms determined by LC-MS were deconvoluted to estimate the more precise purity of the crude products, and we found that the improvement is greater when the free OH β-CyD is used and moderate when the acetyl-β-CyD or the 2-hydroxypropyl-β-CyD derivatives are used. We have found that the free CyD gives an improvement comparable to that achieved with the Ser(ΨPro) derivative.
Collapse
Affiliation(s)
- Szebasztián Szaniszló
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
| | - Viktor Farkas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
- HUN-REN ELTE Protein Modelling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
- HUN-REN ELTE Protein Modelling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, Hungary H-1117
| |
Collapse
|
2
|
Bürgisser H, Williams ET, Jeandin A, Lescure R, Premanand A, Wang S, Hartrampf N. A Versatile "Synthesis Tag" (SynTag) for the Chemical Synthesis of Aggregating Peptides and Proteins. J Am Chem Soc 2024; 146:34887-34899. [PMID: 39639492 DOI: 10.1021/jacs.4c14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Solid-phase peptide synthesis (SPPS) and native chemical ligation (NCL) are powerful methods for obtaining peptides and proteins that are otherwise inaccessible. Nonetheless, numerous sequences are difficult to prepare via SPPS, and cleaved peptides often have low aqueous solubility. To address these challenges, we developed a "Synthesis Tag" consisting of six arginines connected to the target sequence via a cleavable MeDbz linker. "SynTag" effectively improves batch- and flow-SPPS of "difficult sequences", enhances the solubility of the cleaved peptides, and provides direct access to native sequences by hydrolysis, or peptide thioesters for NCL. We demonstrate its utility in the first chemical synthesis of the MYC transactivation domain with a single NCL. We envisage SynTag to become a broadly applicable tool that enables the synthesis and study of previously unattainable peptides and proteins.
Collapse
Affiliation(s)
- Héloïse Bürgisser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Elyse T Williams
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Aliénor Jeandin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Robin Lescure
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Adhvitha Premanand
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nina Hartrampf
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
3
|
Öhlander A, Lüdtke C, Sahakjan A, Johnsson RE. N-Butylpyrrolidinone is an equally good solvent as N,N-dimethylformamide for microwave assisted solid phase peptide synthesis. J Pept Sci 2024; 30:e3612. [PMID: 38720008 DOI: 10.1002/psc.3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 10/12/2024]
Abstract
Solid-phase peptide synthesis (SPPS) is the prevailing method for synthesizing research peptides today. However, SPPS is associated with a significant environmental concern due to the utilization of hazardous solvents such as N,N-dimethylformamide (DMF) or N-methylpyrrolidone, which generate substantial waste. In light of this, our research endeavors to identify more environmentally friendly solvents for SPPS. In this study, we have assessed the suitability of five green solvents as alternatives to DMF in microwave assisted SPPS. The solvents evaluated include Cyrene, ethyl acetate, 1,3-dioxolane, tetrahydro-2-methylfuran, and N-Butylpyrrolidinone (NBP). Our investigation encompassed all stages of the synthesis process, from resin swelling, dissolution of reagents, culminating in the successful synthesis of five diverse peptides, including the challenging ACP 65-74, Peptide 18A, Thymosin α1, and Jung-Redemann peptide. Our findings indicate that NBP emerged as a strong contender, performing on par with DMF in all tested syntheses. Furthermore, we observed that combinations of NBP with either ethyl acetate or tetrahydro-2-methylfuran demonstrated excellent results. This research contributes to the pursuit of more sustainable and environmentally conscious practices in peptide synthesis.
Collapse
|
4
|
Pagano K, De Rosa L, Tomaselli S, Molinari H, D'Andrea LD, Ragona L. Characterizing the Oligomers Distribution along the Aggregation Pathway of Amyloid Aβ1-40 by NMR. Chemistry 2024; 30:e202400594. [PMID: 38712990 DOI: 10.1002/chem.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
This study delves into the early aggregation process of the Aβ1-40 amyloid peptide, elucidating the associated oligomers distribution. Motivated by the acknowledged role of small oligomers in the neurotoxic damage linked to Alzheimer's disease, we present an experimental protocol for preparing 26-O-acyl isoAβ1-40, a modified Aβ1-40 peptide facilitating rapid isomerization to the native amide form at neutral pH. This ensures seed-free solutions, minimizing experimental variability. Additionally, we demonstrate the efficacy of coupling NMR diffusion ordered spectroscopy (DOSY) with the Inverse Laplace Transform (ILT) reconstruction method, for effective characterization of early aggregation processes. This innovative approach efficiently maps oligomers distributions across a wide spectrum of initial peptide concentrations offering unique insights into the evolution of oligomers relative populations. As a proof of concept, we demonstrate the efficacy of our approach assessing the impact of Epigallocathechin gallate, a known remodeling agent of amyloid fibrils, on the oligomeric distributions of aggregated Aβ1-40. The DOSY-ILT proposed approach stands as a robust and discriminating asset, providing a powerful strategy for rapidly gaining insight into potential inhibitors' impact on the aggregation process.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, Via Mario Bianco, 9, Milano, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| |
Collapse
|
5
|
Ochiai H, Elouali S, Yamamoto T, Asai H, Noguchi M, Nishiuchi Y. Chemical and Chemoenzymatic Synthesis of Peptide and Protein Therapeutics Conjugated with Human N-Glycans. ChemMedChem 2024; 19:e202300692. [PMID: 38572578 DOI: 10.1002/cmdc.202300692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.
Collapse
Affiliation(s)
- Hirofumi Ochiai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Sofia Elouali
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Takahiro Yamamoto
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Hiroaki Asai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Masato Noguchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
6
|
Schmid A, Bello C, Becker CFW. Synthesis of N-Glycosylated Soluble Fas Ligand. Chemistry 2024; 30:e202400120. [PMID: 38363216 DOI: 10.1002/chem.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.
Collapse
Affiliation(s)
- Alanca Schmid
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino FI, Italy
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
7
|
Wang X, Jin K. Robust Chemical Synthesis of "Difficult Peptides" via 2-Hydroxyphenol-pseudoproline (ψ 2-hydroxyphenolpro) Modifications. J Org Chem 2024; 89:3143-3149. [PMID: 38373048 DOI: 10.1021/acs.joc.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and β-amyloid (1-42) (Aβ42).
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Collins JM, Singh SK, White TA, Cesta DJ, Simpson CL, Tubb LJ, Houser CL. Total wash elimination for solid phase peptide synthesis. Nat Commun 2023; 14:8168. [PMID: 38071224 PMCID: PMC10710472 DOI: 10.1038/s41467-023-44074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
We present a process for solid phase peptide synthesis (SPPS) that completely eliminates all solvent intensive washing steps during each amino acid addition cycle. A key breakthrough is the removal of a volatile Fmoc deprotection base through bulk evaporation at elevated temperature while preventing condensation on the vessel surfaces with a directed headspace gas flushing. This process was demonstrated at both research and production scales without any impact on product quality and when applied to a variety of challenging sequences (up to 89 amino acids in length). The overall result is an extremely fast, high purity, scalable process with a massive waste reduction (up to 95%) while only requiring 10-15% of the standard amount of base used. This transformation of SPPS represents a step-change in peptide manufacturing process efficiency, and should encourage expanded access to peptide-based therapeutics.
Collapse
Affiliation(s)
- Jonathan M Collins
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA.
| | - Sandeep K Singh
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| | - Travis A White
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| | - Drew J Cesta
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| | - Colin L Simpson
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| | - Levi J Tubb
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| | - Christopher L Houser
- Peptide Synthesis Research, CEM Corporation, 3100 Smith Farm Rd, Matthews, NC, 28104, USA
| |
Collapse
|
9
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
10
|
Naoum JN, Alshanski I, Mayer G, Strauss P, Hurevich M. Stirring Peptide Synthesis to a New Level of Efficiency. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johnny N. Naoum
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Alshanski
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Center of Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Guy Mayer
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Center of Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Poriah Strauss
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Center of Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Center of Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
11
|
D’Ercole A, Pacini L, Sabatino G, Zini M, Nuti F, Ribecai A, Paio A, Rovero P, Papini AM. An Optimized Safe Process from Bench to Pilot cGMP Production of API Eptifibatide Using a Multigram-Scale Microwave-Assisted Solid-Phase Peptide Synthesizer. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annunziata D’Ercole
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- F.I.S.- Fabbrica Italiana Sintetici S.p.A., Viale Milano 26, 36075 Montecchio Maggiore, Vicenza, Italy
| | - Lorenzo Pacini
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- F.I.S.- Fabbrica Italiana Sintetici S.p.A., Viale Milano 26, 36075 Montecchio Maggiore, Vicenza, Italy
| | - Giuseppina Sabatino
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Matteo Zini
- F.I.S.- Fabbrica Italiana Sintetici S.p.A., Viale Milano 26, 36075 Montecchio Maggiore, Vicenza, Italy
| | - Francesca Nuti
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Arianna Ribecai
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- F.I.S.- Fabbrica Italiana Sintetici S.p.A., Viale Milano 26, 36075 Montecchio Maggiore, Vicenza, Italy
| | - Alfredo Paio
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- F.I.S.- Fabbrica Italiana Sintetici S.p.A., Viale Milano 26, 36075 Montecchio Maggiore, Vicenza, Italy
| | - Paolo Rovero
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health─Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
- PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Neuville Campus, CY Cergy Paris Université, 5 mail Gay-Lussac, 95031 Cergy-Pontoise Cedex, France
| |
Collapse
|
12
|
Lian Z, Wang N, Tian Y, Huang L. Characterization of Synthetic Peptide Therapeutics Using Liquid Chromatography-Mass Spectrometry: Challenges, Solutions, Pitfalls, and Future Perspectives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1852-1860. [PMID: 34110145 DOI: 10.1021/jasms.0c00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic peptides represent an important and expanding class of therapeutics. Despite having a relatively small size as compared to monoclonal antibodies and other proteins, synthetic peptides are subject to many complex structural modifications originating from the starting materials, manufacturing process, and storage conditions. Although mass spectrometry has been increasingly used to characterize impurities of synthetic peptides, systematic review of this field is scarce. In this paper, an overview of the impurities in synthetic peptide therapeutics is provided in the context of how the knowledge from detailed characterization of the impurities using liquid chromatography-mass spectrometry (LC-MS) can be used to develop the manufacturing process and control strategy for synthetic peptide therapeutics following the critical quality attribute (CQA)-driven and risk-based approach. The thresholds for identifying and controlling the impurities are discussed based on currently available regulatory guidance. Specific LC-MS techniques for identification of various types of impurities based on their structural characteristics are discussed with the focus on structural isomers and stereoisomers (i.e., peptide epimers). Absolute and relative quantitation methods for the peptide impurities are critiqued. Potential pitfalls in characterization of synthetic peptide therapeutics using LC-MS are discussed. Finally, a systematic LC-MS workflow for characterizing the impurities in synthetic peptide therapeutics is proposed, and future perspectives on applying emerging LC-MS techniques to address the remaining challenges in the development of synthetic peptide therapeutics are presented.
Collapse
Affiliation(s)
- Zhirui Lian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Ning Wang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Yuwei Tian
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Lihua Huang
- Bioproducts Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
13
|
Röber M, Scheibel T, Börner HG. Toward Activatable Collagen Mimics: Combining DEPSI "Switch" Defects and Template-Guided Self-Organization to Control Collagen Mimetic Peptides. Macromol Biosci 2021; 21:e2100070. [PMID: 34008293 DOI: 10.1002/mabi.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/16/2021] [Indexed: 11/10/2022]
Abstract
Collagen mimetic peptides (CMPs), which imitate various structural or functional features of natural collagen, constitute advanced models illuminating the folding aspects of the collagen triple helix (CTH) motif. In this study, the CMPs of repeating Gly-Pro-Pro (GPP) triplets are tethered to an organic scaffold based on a tris(2-aminoethyl) amine (TREN) derivative (TREN(sucOH)3 ). These three templated peptide strands are further expanded via native chemical ligation to increase the number of GPP triplets and lead to a TREN(sucGPPGPPG(Ψ)SPGPPCPP[GPP]4 )3 construct. The incorporation of an ester switch segment, G(Ψ)S, as a positional O-acyl isopeptide (DEPSI) defect into the peptide strands allows the pH-controlled acceleration of CTH formation. The strand assembly process is monitored by circular dichroism (CD) spectroscopy. The results of pH jump experiments and thermal denaturation studies provide new insights into the contributions of structural DEPSI defects to the template-guided self-assembly of the CTH motif. While the organic scaffold drives the CTH formation, the switch defects act as temporary opponents and slow down the folding. CD spectroscopy data confirm that the switch defects contribute to the formation of a more stable CTH motif by enhancing the structural dynamics at the early stage of the folding process.
Collapse
Affiliation(s)
- Matthias Röber
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Universitätsstraße 30, Bayreuth, D-95440, Germany
| | - Hans G Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| |
Collapse
|
14
|
Winkler DFH. Automated Solid-Phase Peptide Synthesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2103:59-94. [PMID: 31879919 DOI: 10.1007/978-1-0716-0227-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of solid-phase peptide synthesis by Bruce Merrifield paved the way for a synthesis carried out by machines. Automated peptide synthesis is a fast and convenient way of synthesizing many peptides simultaneously. This chapter tries to give a general guidance for the development of synthesis protocols for the peptide synthesizer. It also provides some suggestions for the modification of the synthesized peptides. Additionally, many examples of possible challenges during and after the synthesis are given in order to support the reader in finding the best synthesis strategy. Numerous references are given to many of the described matters.
Collapse
|
15
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:E430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
16
|
Ferrer-Gago FJ, Koh LQ. Methods and Approaches for the Solid-Phase Synthesis of Peptide Alcohols. Chempluschem 2020; 85:641-652. [PMID: 32237227 DOI: 10.1002/cplu.201900749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/10/2020] [Indexed: 11/08/2022]
Abstract
Many methods have been developed for attaching an alcohol functionality to a solid support. However, not all of these methods are used to obtain peptide alcohols. In this Minireview, we will discuss several of the most important methods and approaches for the synthesis of peptide alcohols and the attachment of hydroxy groups to a solid support for the synthesis of cyclic peptides. Some of the methods include the use of functionalized Wang resin and the attachment of an alcohol to an enol ether resin. We also discuss the use of the chlorotrityl resin, one of the most common linkers used to obtain peptide alcohols. In addition, we outline the recently developed resins with the Rink, Ramage and Sieber handles. The majority of these methods have been used to synthesize many important drugs, such as octreotide and the antibiotic peptaibols.
Collapse
Affiliation(s)
- Fernando J Ferrer-Gago
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| | - Li Quan Koh
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| |
Collapse
|
17
|
Hussein WM, Skwarczynski M, Toth I. An Isodipeptide Building Block for Microwave-Assisted Solid-Phase Synthesis of Difficult Sequence-Containing Peptides. Methods Mol Biol 2020; 2103:139-150. [PMID: 31879923 DOI: 10.1007/978-1-0716-0227-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microwave technology, in conjunction with the isopeptide strategy including Fmoc-based solid-phase peptide synthesis (SPPS), was used to establish a methodology for time-efficient synthesis of peptides containing difficult sequences. A model difficult sequence-containing peptide (8QSer) was synthesized through this method in 1 day, representing a tenfold reduction in synthesis time compared to the isopeptide method combined with classical SPPS.
Collapse
Affiliation(s)
- Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
18
|
Yoshiya T. Synthesis of O-Acyl Isopeptides: Stepwise and Convergent Solid-Phase Synthesis. Methods Mol Biol 2020; 2103:129-138. [PMID: 31879922 DOI: 10.1007/978-1-0716-0227-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The O-acyl isopeptide method was developed for the preparation of difficult sequence-containing peptides, whose hydrophobic nature hampers both peptide chain construction on resin and purification with HPLC after deprotection. In the O-acyl isopeptide method, the target peptide is synthesized in an O-acyl isopeptide form, which contains an O-acyl isopeptide bond instead of the native N-acyl peptide bond at a hydroxy group-containing amino acid residue, such as Ser or Thr. The hydrophilic O-acyl isopeptide can be isolated, e.g., as a lyophilized TFA salt. The target peptide can be quantitatively obtained by a final O-to-N intramolecular acyl migration reaction with exposure to neutral conditions. Additionally, the O-acyl isopeptide is important as a hydrophilic precursor peptide for biological peptide assays that are difficult to handle. This chapter describes the synthesis of such O-acyl isopeptides by stepwise and convergent Fmoc solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc., Ibaraki-Shi, Osaka, Japan.
| |
Collapse
|
19
|
Sletten ET, Nuño M, Guthrie D, Seeberger PH. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor. Chem Commun (Camb) 2019; 55:14598-14601. [PMID: 31742308 DOI: 10.1039/c9cc08421e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On-resin aggregation and incomplete amide bond formation are major challenges for solid-phase peptide synthesis that are difficult to be monitored in real-time. Incorporation of a pressure-based variable bed flow reactor into an automated solid-phase peptide synthesizer permitted real-time monitoring of resin swelling to determine amino acid coupling efficiency and on-resin aggregation.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | |
Collapse
|
20
|
Merlino F, Tomassi S, Yousif AM, Messere A, Marinelli L, Grieco P, Novellino E, Cosconati S, Di Maro S. Boosting Fmoc Solid-Phase Peptide Synthesis by Ultrasonication. Org Lett 2019; 21:6378-6382. [DOI: 10.1021/acs.orglett.9b02283] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Merlino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Tomassi
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via A. Vivaldi 43, 81100 Caserta, Italy
| | - Ali M. Yousif
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Anna Messere
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via A. Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Paolo Grieco
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via A. Vivaldi 43, 81100 Caserta, Italy
| | - Salvatore Di Maro
- DiSTABiF, Università degli Studi della Campania “Luigi Vanvitelli”, via A. Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
21
|
Mailig M, Liu F. The Application of Isoacyl Structural Motifs in Prodrug Design and Peptide Chemistry. Chembiochem 2019; 20:2017-2031. [DOI: 10.1002/cbic.201900260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Melrose Mailig
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| | - Fa Liu
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| |
Collapse
|
22
|
Kasim JK, Kavianinia I, Harris PWR, Brimble MA. Three Decades of Amyloid Beta Synthesis: Challenges and Advances. Front Chem 2019; 7:472. [PMID: 31334219 PMCID: PMC6614915 DOI: 10.3389/fchem.2019.00472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Aggregation of the pathological amyloid beta (Aβ) isoform Aβ1−42 into senile plaques is a neuropathological hallmark of Alzheimer's disease (AD). The biochemical significance of this phenomenon therefore necessitates the need for ready access to Aβ1−42 for research purposes. Chemical synthesis of the peptide, however, is technically difficult to perform given its propensity to aggregate both on resin during solid phase peptide synthesis and in solution during characterization. This review presents a chronological summary of key publications in the field of Aβ1−42 synthesis, dating back from its maiden synthesis by Burdick et al. Challenges associated with the preparation of Aβ1−42 were identified, and the solutions designed over the course of time critically discussed herein. Ultimately, the intention of this review is to provide readers with an insight into the progress that has been made in the last three decades, and how this has advanced broader research in AD.
Collapse
Affiliation(s)
- Johanes K Kasim
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
|
24
|
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
26
|
Cargoët M, Diemer V, Snella B, Desmet R, Blanpain A, Drobecq H, Agouridas V, Melnyk O. Catalysis of Thiol-Thioester Exchange by Water-Soluble Alkyldiselenols Applied to the Synthesis of Peptide Thioesters and SEA-Mediated Ligation. J Org Chem 2018; 83:12584-12594. [PMID: 30230829 DOI: 10.1021/acs.joc.8b01903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Alkyl bis(2-selanylethyl)amines catalyze the synthesis of peptide thioesters or peptide ligation from bis(2-sulfanylethyl)amido (SEA) peptides. These catalysts are generated in situ by reduction of the corresponding cyclic diselenides by tris(2-carboxyethyl)phosphine. They are particularly efficient at pH 4.0 by accelerating the thiol-thioester exchange processes, which are otherwise rate-limiting at this pH. By promoting SEA-mediated reactions at mildly acidic pH, they facilitate the synthesis of complex peptides such as cyclic O-acyl isopeptides that are otherwise hardly accessible.
Collapse
Affiliation(s)
- Marine Cargoët
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vincent Diemer
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Benoît Snella
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Rémi Desmet
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Annick Blanpain
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Hervé Drobecq
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Vangelis Agouridas
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| | - Oleg Melnyk
- Université de Lille , Institut Pasteur de Lille, UMR CNRS 8204 , 1 rue du Pr Calmette , 59021 Lille , France
| |
Collapse
|
27
|
Zaykov AN, Gelfanov VM, Liu F, DiMarchi RD. High-Yield Synthesis of Human Insulin-Like Peptide 5 Employing a Nonconventional Strategy. Org Lett 2018; 20:3695-3699. [DOI: 10.1021/acs.orglett.8b01501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander N. Zaykov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Vasily M. Gelfanov
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Fa Liu
- Novo Nordisk Research Center, Seattle, Washington 98109, United States
| | - Richard D. DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, Indiana 46241, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Characterization and optimization of two-chain folding pathways of insulin via native chain assembly. Commun Chem 2018. [DOI: 10.1038/s42004-018-0024-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Caporale A, Doti N, Monti A, Sandomenico A, Ruvo M. Automatic procedures for the synthesis of difficult peptides using oxyma as activating reagent: A comparative study on the use of bases and on different deprotection and agitation conditions. Peptides 2018; 102:38-46. [PMID: 29486214 DOI: 10.1016/j.peptides.2018.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Solid-Phase Peptide Synthesis (SPPS) is a rapid and efficient methodology for the chemical synthesis of peptides and small proteins. However, the assembly of peptide sequences classified as "difficult" poses severe synthetic problems in SPPS for the occurrence of extensive aggregation of growing peptide chains which often leads to synthesis failure. In this framework, we have investigated the impact of different synthetic procedures on the yield and final purity of three well-known "difficult peptides" prepared using oxyma as additive for the coupling steps. In particular, we have comparatively investigated the use of piperidine and morpholine/DBU as deprotection reagents, the addition of DIPEA, collidine and N-methylmorpholine as bases to the coupling reagent. Moreover, the effect of different agitation modalities during the acylation reactions has been investigated. Data obtained represent a step forward in optimizing strategies for the synthesis of "difficult peptides".
Collapse
Affiliation(s)
- A Caporale
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy
| | - N Doti
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy.
| | - A Monti
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - A Sandomenico
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy
| | - M Ruvo
- IBB-CNR, Via Mezzocannone 16, 80134 Napoli, Italy; CIRPeB, Via Mezzocannone 16, 80134 Napoli, Italy.
| |
Collapse
|
30
|
Zaykov AN, Gelfanov VM, Liu F, DiMarchi RD. Synthesis and Characterization of the R27S Genetic Variant of Insulin-like Peptide 5. ChemMedChem 2018; 13:852-859. [DOI: 10.1002/cmdc.201800057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/20/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander N. Zaykov
- Novo Nordisk Research Center Indianapolis; 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Vasily M. Gelfanov
- Novo Nordisk Research Center Indianapolis; 5225 Exploration Drive Indianapolis IN 46241 USA
| | - Fa Liu
- Novo Nordisk Research Center Seattle; 530 Fairview Avenue N. #5000 Seattle WA 98109 USA
| | - Richard D. DiMarchi
- Novo Nordisk Research Center Indianapolis; 5225 Exploration Drive Indianapolis IN 46241 USA
- Department of Chemistry; Indiana University; 800 E. Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
31
|
Kim J, Kim S, Shin DS, Lee YS. Preparation of tri(ethylene glycol) grafted core-shell type polymer support for solid-phase peptide synthesis. J Pept Sci 2017; 24. [PMID: 29235177 DOI: 10.1002/psc.3061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 11/10/2022]
Abstract
A core-shell type polymer support for solid-phase peptide synthesis has been developed for high coupling efficiency of peptides and versatile applications such as on-bead bioassays. Although various kinds of polymer supports have been developed, they have their own drawbacks including poor accessibility of reagents and incompatibility in aqueous solution. In this paper, we prepared hydrophilic tri(ethylene glycol) (TEG) grafted core-shell type polymer supports (TEG SURE) for efficient solid-phase peptide synthesis and on-bead bioassays. TEG SURE was prepared by grafting TEG derivative on the surface of AM PS resin via biphasic diffusion control method and subsequent acetylation of amine groups which are located at the core region of AM PS resin. The performance of TEG SURE was evaluated by synthesizing several peptides. Three points can be highlighted: (1) easy control of loading level of TEG, (2) improved efficiency of peptide synthesis compared with the conventional resins, and (3) applicability of on-bead bioassays.
Collapse
Affiliation(s)
- Jaehi Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seojung Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
Moroder L, Musiol HJ. Insulin - von seiner Entdeckung bis zur industriellen Synthese moderner Insulin-Analoga. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Moroder
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Hans-Jürgen Musiol
- Bioorganische Chemie; Max-Planck-Institut für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| |
Collapse
|
33
|
Moroder L, Musiol HJ. Insulin-From its Discovery to the Industrial Synthesis of Modern Insulin Analogues. Angew Chem Int Ed Engl 2017; 56:10656-10669. [DOI: 10.1002/anie.201702493] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Luis Moroder
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| | - Hans-Jürgen Musiol
- Bioorganic Chemistry; Max-Planck Institute of Biochemistry; Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|
34
|
Kumar A, Jad YE, de la Torre BG, El-Faham A, Albericio F. Re-evaluating the stability of COMU in different solvents. J Pept Sci 2017; 23:763-768. [DOI: 10.1002/psc.3024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Ashish Kumar
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Yahya E. Jad
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Beatriz G. de la Torre
- School of Health Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
- School of Laboratory of Medicine and Medical Sciences; University of KwaZulu-Natal; Durban 4001 South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- Chemistry Department, Faculty of Science; Alexandria University; PO Box 426, Ibrahimia 12321 Alexandria Egypt
| | - Fernando Albericio
- School of Chemistry and Physics; University of KwaZulu-Natal; Durban 4001 South Africa
- Department of Chemistry, College of Science; King Saud University; PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Organic Chemistry; University of Barcelona; 08028 Barcelona Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine; Barcelona Science Park; Barcelona 08028 Spain
| |
Collapse
|
35
|
Tang Y, Thillier Y, Liu R, Li X, Lam KS, Gao T. Single-Bead Quantification of Peptide Loading Distribution for One-Bead One-Compound Library Synthesis Using Confocal Raman Spectroscopy. Anal Chem 2017; 89:7000-7008. [PMID: 28530391 DOI: 10.1021/acs.analchem.7b00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report an analytical method to determine peptide loading of "one-bead one-compound" (OBOC) combinatorial peptide libraries at single-bead level. The quantification is based on a linear relationship between the amount of N-terminal amino groups on individual peptide beads and the intensity of Raman signal obtained from a specifically designed reporter labeled on amino groups. Confocal Raman spectroscopy was employed to characterize peptide loading of beads with defined peptide sequences and from OBOC combinatorial peptide libraries. Although amine loading of blank TentaGel beads was found to be uniform, peptide loading among beads of OBOC peptide libraries varied substantially, particularly for those libraries with long sequences. Construction of OBOC libraries can be monitored with this novel analytical technique so that synthetic conditions can be optimized for the preparation of high-quality OBOC peptide libraries. As the variability of peptide loading of individual library beads can significantly influence the screening results, quantitative information obtained by this method will allow us to gain insight into the complexity and challenge of OBOC library synthesis and screening.
Collapse
Affiliation(s)
- Yuchen Tang
- College of Chemistry, Central China Normal University , Wuhan 430079, China.,China Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China.,Department of Biochemistry and Molecular Medicine, University of California at Davis , Sacramento, California 95817, United States
| | - Yann Thillier
- Department of Biochemistry and Molecular Medicine, University of California at Davis , Sacramento, California 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California at Davis , Sacramento, California 95817, United States
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California at Davis , Sacramento, California 95817, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California at Davis , Sacramento, California 95817, United States
| | - Tingjuan Gao
- College of Chemistry, Central China Normal University , Wuhan 430079, China.,China Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Wuhan 430079, China
| |
Collapse
|
36
|
A fully automated flow-based approach for accelerated peptide synthesis. Nat Chem Biol 2017; 13:464-466. [PMID: 28244989 DOI: 10.1038/nchembio.2318] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022]
Abstract
Here we report a fully automated, flow-based approach to solid-phase polypeptide synthesis, with amide bond formation in 7 seconds and total synthesis times of 40 seconds per amino acid residue. Crude peptide purities and isolated yields were comparable to those for standard-batch solid-phase peptide synthesis. At full capacity, this approach can yield tens of thousands of individual 30-mer peptides per year.
Collapse
|
37
|
Sato T. Chemical synthesis of transmembrane peptide and its application for research on the transmembrane-juxtamembrane region of membrane protein. Biopolymers 2017; 106:613-21. [PMID: 26573237 DOI: 10.1002/bip.22775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Membrane proteins possess one or more hydrophobic regions that span the membrane and interact with the lipids that constitute the membrane. The interactions between the transmembrane (TM) region and lipids affect the structure and function of these membrane proteins. Molecular characterization of synthetic TM peptides in lipid bilayers helps to understand how the TM region participates in the formation of the structure and in the function of membrane proteins. The use of synthetic peptides enables site-specific labeling and modification and allows for designing of an artificial TM sequence. Research involving such samples has resulted in significant increase in the knowledge of the mechanisms that govern membrane biology. In this review, the chemical synthesis of TM peptides has been discussed. The preparation of synthetic TM peptides is still not trivial; however, the accumulated knowledge summarized here should provide a basis for preparing samples for spectroscopic analyses. The application of synthetic TM peptides for gaining insights into the mechanism of signal transduction by receptor tyrosine kinase (RTK) has also been discussed. RTK is a single TM protein and is one of the difficult targets in structural biology as crystallization of the full-length receptor has not been successful. This review describes the structural characterization of the synthetic TM-juxtamembrane sequence and proposes a possible scheme for the structural changes in this region for the activation of ErbBs, the epidermal growth factor receptor family. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 613-621, 2016.
Collapse
Affiliation(s)
- Takeshi Sato
- Laboratory of Protein Organic Chemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
38
|
Koga T, Aso E, Higashi N. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12378-12386. [PMID: 27340892 DOI: 10.1021/acs.langmuir.6b01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser)ester-b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Eri Aso
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
39
|
Yang X, Gelfanov V, Liu F, DiMarchi R. Synthetic Route to Human Relaxin-2 via Iodine-Free Sequential Disulfide Bond Formation. Org Lett 2016; 18:5516-5519. [DOI: 10.1021/acs.orglett.6b02751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Yang
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Vasily Gelfanov
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Fa Liu
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| | - Richard DiMarchi
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Novo Nordisk
Research
Center Indianapolis, Indianapolis, Indiana 46241, United States
| |
Collapse
|
40
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
41
|
Beyer I, Rezaei-Ghaleh N, Klafki HW, Jahn O, Haußmann U, Wiltfang J, Zweckstetter M, Knölker HJ. Solid-Phase Synthesis and Characterization of N-Terminally Elongated Aβ-3-x -Peptides. Chemistry 2016; 22:8685-93. [PMID: 27167300 PMCID: PMC5084751 DOI: 10.1002/chem.201600892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/24/2023]
Abstract
In addition to the prototypic amyloid-β (Aβ) peptides Aβ1-40 and Aβ1-42 , several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid-phase peptide synthesis of the N-terminally elongated Aβ-peptides Aβ-3-38 , Aβ-3-40 , and Aβ-3-42 . Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ-3-38 and Aβ-3-40 are generated by transfected cells even in the presence of a tripartite β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(-3) can be separated from N-terminally-truncated Aβ forms by high-resolution isoelectric-focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N-terminally elongated Aβ variants in Alzheimer's disease.
Collapse
Affiliation(s)
- Isaak Beyer
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Nasrollah Rezaei-Ghaleh
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany
| | - Olaf Jahn
- Max Planck Institute for Experimental Medicine, Proteomics Group, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ute Haußmann
- University of Duisburg-Essen, 45141, Essen, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany. ,
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-Universität, 37075, Göttingen, Germany. ,
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.
| |
Collapse
|
42
|
Chemuru S, Kodali R, Wetzel R. Improved chemical synthesis of hydrophobic Aβ peptides using addition of C-terminal lysines later removed by carboxypeptidase B. Biopolymers 2016; 102:206-21. [PMID: 24488729 DOI: 10.1002/bip.22470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023]
Abstract
Many amyloidogenic peptides are highly hydrophobic, introducing significant challenges to obtaining high quality peptides by chemical synthesis. For example, while good yield and purity can be obtained in the solid-phase synthesis of the Alzheimer's plaque peptide Aβ40, addition of a C-terminal Ile-Ala sequence to generate the more toxic Aβ42 molecule creates a much more difficult synthesis resulting in low yields and purities. We describe here a new method that significantly improves the Fmoc solid-phase synthesis of Aβ peptides. In our method, Lys residues are linked to the desired peptide's C-terminus through standard peptide bonds during the synthesis. These Lys residues are then removed post-purification using immobilized carboxypeptidase B (CPB). With this method we obtained both Aβ42 and Aβ46 of superior quality that, for Aβ42, rivals that obtained by recombinant expression. Intriguingly, the method appears to provide independent beneficial effects on both the total synthetic yield and on purification yield and final purity. Reversible Lys addition with CPB removal should be a generally useful method for making hydrophobic peptides that is applicable to any sequence not ending in Arg or Lys. As expected from the additional hydrophobicity of Aβ46, which is extended from the sequence Aβ42 by a C-terminal Thr-Val-Ile-Val sequence, this peptide makes typical amyloid at rates significantly faster than for Aβ42 or Aβ40. The enhanced amyloidogenicity of Aβ46 suggests that, even though it is present in relatively low amounts in the human brain, it could play a significant role in helping to initiate Aβ amyloid formation.
Collapse
Affiliation(s)
- Saketh Chemuru
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | |
Collapse
|
43
|
Liu F, Zaykov AN, Levy JJ, DiMarchi RD, Mayer JP. Chemical synthesis of peptides within the insulin superfamily. J Pept Sci 2016; 22:260-70. [PMID: 26910514 DOI: 10.1002/psc.2863] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Abstract
The synthesis of insulin has inspired fundamental advances in the art of peptide science while simultaneously revealing the structure-function relationship of this centrally important metabolic hormone. This review highlights milestones in the chemical synthesis of insulin that can be divided into two separate approaches: (i) disulfide bond formation driven by protein folding and (ii) chemical reactivity-directed sequential disulfide bond formation. Common to the two approaches are the persistent challenges presented by the hydrophobic nature of the individual A-chain and B-chain and the need for selective disulfide formation under mildly oxidative conditions. The extension and elaboration of these synthetic approaches have been ongoing within the broader insulin superfamily. These structurally similar peptides include the insulin-like growth factors and also the related peptides such as relaxin that signal through G-protein-coupled receptors. After a half-century of advances in insulin chemistry, we have reached a point where synthesis is no longer limiting structural and biological investigation within this family of peptide hormones. The future will increasingly focus on the refinement of structure to meet medicinal purposes that have long been pursued, such as the development of a glucose-sensitive insulin. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fa Liu
- Calibrium LLC, 11711 N. Meridian Street, Carmel, IN, 46032, USA
| | - Alexander N Zaykov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Jay J Levy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - John P Mayer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
44
|
Kalistratova A, Legrand B, Verdié P, Naydenova E, Amblard M, Martinez J, Subra G. A switchable stapled peptide. J Pept Sci 2016; 22:143-8. [PMID: 26785930 DOI: 10.1002/psc.2851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022]
Abstract
The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.
Collapse
Affiliation(s)
- Aleksandra Kalistratova
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France.,University of Chemical Technology and Metallurgy, Sophia, Bulgaria
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, Sophia, Bulgaria
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| |
Collapse
|
45
|
Behrendt R, White P, Offer J. Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 2016; 22:4-27. [PMID: 26785684 PMCID: PMC4745034 DOI: 10.1002/psc.2836] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022]
Abstract
Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications.
Collapse
Affiliation(s)
- Raymond Behrendt
- Novabiochem, Merck & CieIm Laternenacker 58200SchaffhausenSwitzerland
| | - Peter White
- Novabiochem, Merck Chemicals LtdPadge RoadBeestonNG9 2JRUK
| | - John Offer
- The Francis Crick Institute215 Euston RoadLondonNW1 2BEUK
| |
Collapse
|
46
|
Koga T, Mima K, Matsumoto T, Higashi N. Amino Acid-derived Polymer with Changeable Enzyme Degradability based on pH-induced Structural Conversion from Polyester to Polypeptide. CHEM LETT 2015. [DOI: 10.1246/cl.150880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Kotaro Mima
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Takahiro Matsumoto
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| |
Collapse
|
47
|
Paradís-Bas M, Tulla-Puche J, Albericio F. The road to the synthesis of "difficult peptides". Chem Soc Rev 2015; 45:631-54. [PMID: 26612670 DOI: 10.1039/c5cs00680e] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed a renaissance of peptides as drugs. This progress, together with advances in the structural behavior of peptides, has attracted the interest of the pharmaceutical industry in these molecules as potential APIs. In the past, major peptide-based drugs were inspired by sequences extracted from natural structures of low molecular weight. In contrast, nowadays, the peptides being studied by academic and industrial groups comprise more sophisticated sequences. For instance, they consist of long amino acid chains and show a high tendency to form aggregates. Some researchers have claimed that preparing medium-sized proteins is now feasible with chemical ligation techniques, in contrast to medium-sized peptide syntheses. The complexity associated with the synthesis of certain peptides is exemplified by the so-called "difficult peptides", a concept introduced in the 80's. This refers to sequences that show inter- or intra-molecular β-sheet interactions significant enough to form aggregates during peptide synthesis. These structural associations are stabilized and mediated by non-covalent hydrogen bonds that arise on the backbone of the peptide and-depending on the sequence-are favored. The tendency of peptide chains to aggregate is translated into a list of common behavioral features attributed to "difficult peptides" which hinder their synthesis. In this regard, this manuscript summarizes the strategies used to overcome the inherent difficulties associated with the synthesis of known "difficult peptides". Here we evaluate several external factors, as well as methods to incorporate chemical modifications into sequences, in order to describe the strategies that are effective for the synthesis of "difficult peptides". These approaches have been classified and ordered to provide an extensive guide for achieving the synthesis of peptides with the aforementioned features.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
48
|
Fernández-Llamazares AI, Spengler J, Albericio F. Review backboneN-modified peptides: How to meet the challenge of secondary amine acylation. Biopolymers 2015; 104:435-52. [DOI: 10.1002/bip.22696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Ana I. Fernández-Llamazares
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Jan Spengler
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
| | - Fernando Albericio
- Institute for Research in Biomedicine; Deparment of Chemistry and Molecular Pharmacology, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- CIBER-BBN; Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park; Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Organic Chemistry; University of Barcelona; Martí i Franquès 1-11 Barcelona 08028 Spain
- School of Chemistry and Physics; University of KwaZulu-Natal; 4001 Durban South Africa
- School of Life Sciences, Department of Chemistry, Yachay Tech, Yachay City of Knowledge; Urcuquι 100119 Ecuador. Department of Chemistry; College of Science, King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|
49
|
|
50
|
Stach M, Weidkamp AJ, Yang SH, Hung KY, Furkert DP, Harris PWR, Smaill JB, Patterson AV, Brimble MA. Improved Strategy for the Synthesis of the Anticancer Agent Culicinin D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|