1
|
Nikl J, Hofman K, Mossazghi S, Möller IC, Mondeshki D, Weinelt F, Baumann FE, Waldvogel SR. Electrochemical oxo-functionalization of cyclic alkanes and alkenes using nitrate and oxygen. Nat Commun 2023; 14:4565. [PMID: 37507379 PMCID: PMC10382549 DOI: 10.1038/s41467-023-40259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Direct functionalization of C(sp3)-H bonds allows rapid access to valuable products, starting from simple petrochemicals. However, the chemical transformation of non-activated methylene groups remains challenging for organic synthesis. Here, we report a general electrochemical method for the oxidation of C(sp3)-H and C(sp2)-H bonds, in which cyclic alkanes and (cyclic) olefins are converted into cycloaliphatic ketones as well as aliphatic (di)carboxylic acids. This resource-friendly method is based on nitrate salts in a dual role as anodic mediator and supporting electrolyte, which can be recovered and recycled. Reducing molecular oxygen as a cathodic counter reaction leads to efficient convergent use of both electrode reactions. By avoiding transition metals and chemical oxidizers, this protocol represents a sustainable oxo-functionalization method, leading to a valuable contribution for the sustainable conversion of petrochemical feedstocks into synthetically usable fine chemicals and commodities.
Collapse
Affiliation(s)
- Joachim Nikl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Kamil Hofman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Samuel Mossazghi
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Isabel C Möller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniel Mondeshki
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frank Weinelt
- Evonik Operations GmbH, Paul-Baumann-Strasse 1, 45772, Marl, Germany
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
2
|
Gámez S, de la Torre E, Gaigneaux EM. Palm Oil Valorization through the Oxidative Cleavage of Unsaturated Fatty Acids with Ru-Carbon Catalysts. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Sebastián Gámez
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Pasteur 1, L4.01.09, 1348 Louvain-la-Neuve, Belgium
| | - Ernesto de la Torre
- Department of Extractive Metallurgy, Escuela Politécnica Nacional, Ladron de Guevera E11-253, Quito 170517, Ecuador
| | - Eric M. Gaigneaux
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Pasteur 1, L4.01.09, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
4
|
Park JE, Lee TH, Ham SL, Subedi L, Hong SM, Kim SY, Choi SU, Kim CS, Lee KR. Anticancer and Anti-Neuroinflammatory Constituents Isolated from the Roots of Wasabia japonica. Antioxidants (Basel) 2022; 11:antiox11030482. [PMID: 35326132 PMCID: PMC8944812 DOI: 10.3390/antiox11030482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Wasabi (Wasabia japonica (Miq.) Matsum.) is a pungent spice commonly consumed with sushi and sashimi. From the roots of this plant, a new 2-butenolide derivative (1) and 17 previously reported compounds (2–18) were isolated and structurally characterized. Their chemical structures were characterized based on the conventional NMR (1H and 13C, COSY, HSQC, and HMBC) and HRESIMS data analysis. All of these phytochemicals (1–18) were evaluated for their antiproliferative effects on the four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and MKN-1), for their inhibitory activity on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 microglia cells, and for their nerve growth factor (NGF)-releasing effect from C6 glioma cells. Among the isolated compounds, compound 15 showed powerful antiproliferative activities against A549 and SK-MEL-2 cell lines with IC50 values of 2.10 and 9.08 μM, respectively. Moreover, the new compound 1 exhibited moderate NO inhibition activity with IC50 value of 45.3 μM.
Collapse
Affiliation(s)
- Jong Eel Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.E.P.); (T.H.L.)
- Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea
| | - Tae Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.E.P.); (T.H.L.)
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea;
| | - Song Lim Ham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea;
| | - Lalita Subedi
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea; (L.S.); (S.M.H.); (S.Y.K.)
| | - Seong Min Hong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea; (L.S.); (S.M.H.); (S.Y.K.)
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea; (L.S.); (S.M.H.); (S.Y.K.)
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Chung Sub Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.E.P.); (T.H.L.)
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (C.S.K.); (K.R.L.); Tel.: +82-31-290-7750 (C.S.K.); +82-31-290-7727 (K.R.L.)
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (J.E.P.); (T.H.L.)
- Correspondence: (C.S.K.); (K.R.L.); Tel.: +82-31-290-7750 (C.S.K.); +82-31-290-7727 (K.R.L.)
| |
Collapse
|
5
|
Yun D, Zhang Z, Flaherty DW. Catalyst and reactor design considerations for selective production of acids by oxidative cleavage of alkenes and unsaturated fatty acids with H 2O 2. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00160h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic insight and measurements of apparent kinetics for productive and non-productive reaction pathways guide the development of semi-batch reactors and conditions for stable production of carboxylic acids and diacids over supported tungstate catalysts.
Collapse
Affiliation(s)
- Danim Yun
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - Zhongyao Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL-61801, USA
| |
Collapse
|
6
|
Identification and quantification of dicarboxylic fatty acids in head tissue of farmed Nile tilapia (Oreochromis niloticus). Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.
Collapse
|
7
|
Schink C, Spielvogel S, Imhof W. Synthesis of 13 C-labelled ω-hydroxy carboxylic acids of the general formula HO 2 13 C-(CH 2 ) n -CH 2 OH or HO 2 C-(CH 2 ) n - 13 CH 2 OH (n = 12, 16, 20, 28). J Labelled Comp Radiopharm 2021; 64:385-402. [PMID: 34157793 DOI: 10.1002/jlcr.3931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022]
Abstract
13 C-labelled ω-hydroxy-carboxylic acids HO2 13 C-(CH2 )n -CH2 OH or HO2 C-(CH2 )n -13 CH2 OH (n = 12, 16, 20, 28) with 13 C labels selectively introduced either at the carboxy group or at the primary alcohol function at the end of the hydrocarbon chain have been synthesized. Different synthetic strategies had to be applied depending on the position of the label, the chain length of the respective synthetic target and due to economic considerations. 13 C labels in general were introduced by nucleophilic substitution of a suitable leaving group with labelled potassium cyanide and subsequent hydrolysis of the nitriles to produce the corresponding labelled carboxy functions, which may also be reduced to give the labelled primary alcohol group. All new compounds are characterized by GC/MS, IR and NMR methods as well as by elemental analysis.
Collapse
Affiliation(s)
- Carina Schink
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Imhof
- Institute of Integrated Natural Sciences, University Koblenz - Landau, Koblenz, Germany
| |
Collapse
|
8
|
Vassoi A, Tabanelli T, Sacchetti A, Di Gioia F, Capuzzi L, Cavani F. The Oxidative Cleavage of 9,10-Dihydroxystearic Triglyceride with Oxygen and Cu Oxide-based Heterogeneous Catalysts. CHEMSUSCHEM 2021; 14:2375-2382. [PMID: 33760369 PMCID: PMC8251944 DOI: 10.1002/cssc.202100322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This paper deals with a new heterogeneous catalyst for the second step in the two-step oxidative cleavage of unsaturated fatty acids triglycerides derived from vegetable oil, a reaction aimed at the synthesis of azelaic and pelargonic acids. The former compound is a bio-monomer for the synthesis of polyesters; the latter, after esterification, is used in cosmetics and agrochemicals. The reaction studied offers an alternative to the currently used ozonization process, which has severe drawbacks in terms of safety and energy consumption. The cleavage was carried out with oxygen, starting from the glycol (dihydroxystearic acid triglyceride), the latter obtained by the dihydroxylation of oleic acid triglyceride. The catalysts used were based on Cu2+ , in the form of either an alumina-supported oxide or a mixed, spinel-type oxide. The CuO/Al2 O3 catalyst could be recovered, regenerated, and recycled, yielding promising results for further industrial exploitation.
Collapse
Affiliation(s)
- Andrea Vassoi
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | - Tommaso Tabanelli
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | - Annalisa Sacchetti
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| | | | | | - Fabrizio Cavani
- Dipartimento di Chimica Industriale “Toso Montanari” Alma Mater StudiorumUniversità di BolognaViale del Risorgimento, 440136BolognaItaly
| |
Collapse
|
9
|
Metabolite profile of Nectandra oppositifolia Nees & Mart. and assessment of antitrypanosomal activity of bioactive compounds through efficiency analyses. PLoS One 2021; 16:e0247334. [PMID: 33630860 PMCID: PMC7906415 DOI: 10.1371/journal.pone.0247334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 μM, similar to positive control benznidazole (18.7 μM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 μM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi.
Collapse
|
10
|
Yun D, Ayla EZ, Bregante DT, Flaherty DW. Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H 2O 2 over Tungsten Oxide Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danim Yun
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - E. Zeynep Ayla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David W. Flaherty
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Wang Z, Xiang H, Dong P, Zhang T, Lu C, Jin T, Chai KY. Pegylated azelaic acid: Synthesis, tyrosinase inhibitory activity, antibacterial activity and cytotoxic studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Nasibipour M, Safaei E, Wojtczak A, Jagličić Z, Galindo A, Masoumpour MS. A biradical oxo-molybdenum complex containing semiquinone and o-aminophenol benzoxazole-based ligands. RSC Adv 2020; 10:40853-40866. [PMID: 35519205 PMCID: PMC9059147 DOI: 10.1039/d0ra06351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (μ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 μB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana Jadranska 19 Ljubljana Slovenia
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla Aptdo. 1203 41071 Sevilla Spain
| | | |
Collapse
|
13
|
Du L, Wang Z, Wu J. Iodobenzene-catalyzed oxidative cleavage of olefins to carbonyl compounds. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Direct and Solvent‐Free Oxidative Cleavage of Double Bonds in High‐Oleic Vegetable Oils. ChemistrySelect 2020. [DOI: 10.1002/slct.201903516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Hoang PH, Van Don B, Chung NH. Cleavage of double bond using metal‐loaded ZSM‐5 zeolite catalysts for renewable biochemical application. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phan Huy Hoang
- School of Chemical EngineeringHanoi University of Science & TechnologyNo.1, Dai Co Viet StreetHanoiVietnam
| | - Bui Van Don
- School of Chemical EngineeringHanoi University of Science & TechnologyNo.1, Dai Co Viet StreetHanoiVietnam
| | - Nguyen Hoang Chung
- School of Chemical EngineeringHanoi University of Science & TechnologyNo.1, Dai Co Viet StreetHanoiVietnam
| |
Collapse
|
16
|
Wang M, Ma J, Liu H, Luo N, Zhao Z, Wang F. Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03790] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Ma
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Huifang Liu
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis
(SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
17
|
Hsu CW, Septiadi D, Lai CH, Chen P, Seeberger PH, De Cola L. Glucose-Modified Silicon Nanoparticles for Cellular Imaging. Chempluschem 2017; 82:660-667. [PMID: 31961576 DOI: 10.1002/cplu.201700054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Indexed: 11/12/2022]
Abstract
Luminescent silicon nanoparticles have recently attracted attention due to their remarkable stability, covalent functionalisation and tunable photoemission properties. Owing to their biocompatibility, low toxicity, and the small particle size that can be achieved by different synthetic approaches, these nanomaterials are candidates as cellular probes in the field of bioimaging, and potentially for in vivo applications. Tailoring the surface of the particles with active biomolecules such as sugar moieties can be an interesting strategy to increase the kinetics of internalisation or to vary the localisation of nanosystems in living cells. In this study, we synthesised and modified ultrasmall silicon nanoparticles with glucose covalently linked on their surface. Moreover, by varying the ratio between the amount of silicon nanoparticles and the saccharide groups, the amount of glucose, as a capping moiety, can be well controlled. FTIR spectroscopy, NMR spectroscopy, zeta potential measurements and anisotropy decay analysis confirmed the covalent binding of glucose to the nanoparticles. The photophysical behaviour of the surface-functionalised silicon quantum dots was not significantly different to that of the unmodified nanoparticles. In vitro studies demonstrated faster internalisation of the glucose-functionalised nanoparticles into HeLa cells. Different localisation and uptake kinetics of the glucose-modified particles compared to the unmodified particles are discussed in order to reveal the role played by the sugar molecules.
Collapse
Affiliation(s)
- Chien-Wei Hsu
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France.,Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dedy Septiadi
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Chian-Hui Lai
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Pengkun Chen
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France.,Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Xing Y, Gao Q, Zhang Y, Ma L, Loh KY, Peng M, Chen C, Cui Y. The improved sensitive detection of C-reactive protein based on the chemiluminescence immunoassay by employing monodispersed PAA-Au/Fe3O4 nanoparticles and zwitterionic glycerophosphoryl choline. J Mater Chem B 2017; 5:3919-3926. [DOI: 10.1039/c7tb00637c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Monodispersed PAA-Au/Fe3O4 NPs were engineered for highly sensitive CRP assay with zwitterionic glycerophosphoryl choline as the co-blocking agent.
Collapse
Affiliation(s)
- Yan Xing
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Qin Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Yanmin Zhang
- Shaanxi Province Hospital of traditional Chinese medicine
- Xi'an
- P. R. China
| | - Le Ma
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| | - Kang Yong Loh
- Department of Chemistry
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| | - Yali Cui
- National Engineering Research Center for Miniaturized Detection Systems
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
19
|
Santilli C, Makarov IS, Fristrup P, Madsen R. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex. J Org Chem 2016; 81:9931-9938. [DOI: 10.1021/acs.joc.6b02105] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carola Santilli
- Department
of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ilya S. Makarov
- Department
of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Peter Fristrup
- Department
of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Robert Madsen
- Department
of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
20
|
Mi C, Li L, Meng XG, Yang RQ, Liao XH. Highly selective oxidation of unsaturated hydrocarbons to carbonyl compounds by two-phase catalysis. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhang WJ, Guo SS, You CX, Geng ZF, Liang JY, Deng ZW, Wang CF, Du SS, Wang YY. Chemical Composition of Essential Oils from Zanthoxylum bungeanum Maxim. and Their Bioactivities against Lasioderma serricorne. J Oleo Sci 2016; 65:871-879. [PMID: 27628733 DOI: 10.5650/jos.ess16038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two essential oil samples were obtained from the pericarp of Zanthoxylum bungeanum with the methods of hydrodistillation (HD) and supercritical fluid CO2 extraction (SFE), their chemical components were identified, and their bioactivities against Lasioderma serricorne adults were evaluated. In the process of testing, the two samples showed significant bioactivities against Lasioderma serricorne adults. For an example, the SFE-sample expressed relatively stronger fumigant toxicity on Lasioderma serricorne adults (LC50 = 3.99 μg/mL air) than that of the HD-sample (LC50 = 12.54 μg/mL air). According to GC-MS analysis, the chemical components between two samples were different. The major chemical components for HD included linalool (25.99%), limonene (19.34%), linalyl anthranilate (12.22%), 4-terpinenol (10.49%), eucalyptol (6.53%) and α-terpineol (5.02%), while for SFE included nonanoic acid (21.43%), γ-terpinene (14.51%), eucalyptol (13.45%), α-terpineol (5.83%) and caryophyllene oxide (5.48%). The results showed that different chemical components result in different bioactivities. This work provides theoretical basis for traditional Chinese concept of antagonistic storage, and it also provides important information for the development and comprehensive utilization of Zanthoxylum bungeanum.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Beijing Normal University
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodig MJ, Snow AW, Scholl P, Rea S. Synthesis and Low Temperature Spectroscopic Observation of 1,3,5-Trioxane-2,4,6-Trione: The Cyclic Trimer of Carbon Dioxide. J Org Chem 2016; 81:5354-61. [DOI: 10.1021/acs.joc.6b00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael J. Rodig
- Chemistry
Division, Naval Research Laboratory, Washington, D. C. 20375, United States
| | - Arthur W. Snow
- Chemistry
Division, Naval Research Laboratory, Washington, D. C. 20375, United States
| | - Paul Scholl
- Mettler-Toledo AutoChem, Inc., Columbia, Maryland 21046, United States
| | - Simon Rea
- Mettler-Toledo AutoChem, Inc., Columbia, Maryland 21046, United States
| |
Collapse
|
23
|
Geyer R, Nordemann U, Strasser A, Wittmann HJ, Buschauer A. Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H4 Receptor Agonists. J Med Chem 2016; 59:3452-70. [PMID: 27007611 DOI: 10.1021/acs.jmedchem.6b00120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[2-(phenylsulfanyl)ethyl]guanidine (UR-PI376, 1) is a potent and selective agonist of the human histamine H4 receptor (hH4R). To gain information on the active conformation, we synthesized analogues of 1 with a cyclopentane-1,3-diyl linker. Affinities and functional activities were determined at recombinant hHxR (x: 1-4) subtypes on Sf9 cell membranes (radioligand binding, [(35)S]GTPγS, or GTPase assays) and in part in luciferase assays on human or mouse H4R (HEK-293 cells). The most potent H4R agonists among 14 racemates were separated by chiral HPLC, yielding eight enantiomerically pure compounds. Configurations were assigned based on X-ray structures of intermediates and a stereocontrolled synthetic pathway. (+)-2-Cyano-1-{[trans-(1S,3S)-3-(1H-imidazol-4-yl)cyclopentyl]methyl}-3-[2-(phenylsulfanyl)ethyl]guanidine ((1S,3S)-UR-RG98, 39a) was the most potent H4R agonist in this series (EC50 11 nM; H4R vs H3R, >100-fold selectivity; H1R, H2R, negligible activities), whereas the optical antipode proved to be an H4R antagonist ([(35)S]GTPγS assay). MD simulations confirmed differential stabilization of the active and inactive H4R state by the enantiomers.
Collapse
Affiliation(s)
- Roland Geyer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Uwe Nordemann
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Andrea Strasser
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Hans-Joachim Wittmann
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
24
|
Enferadi Kerenkan A, Béland F, Do TO. Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: a review and perspective. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01118c] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent catalytic systems reported for the oxidative cleavage of UFAs have been investigated in three classes; homogeneous, heterogeneous, and semi-heterogeneous catalysts.
Collapse
Affiliation(s)
| | - François Béland
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| | - Trong-On Do
- Department of Chemical Engineering
- Laval University
- Québec
- G1V 0A6 Canada
| |
Collapse
|
25
|
Bhuyan B, Paul B, Vadivel S, Dhar SS. Preparation and characterization of WO3 bonded imidazolium sulfonic acid chloride as a novel and green ionic liquid catalyst for the synthesis of adipic acid. RSC Adv 2016. [DOI: 10.1039/c6ra16098k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The work represents the synthesis of a novel WO3 bonded IL catalyst. It is used as a heterogeneous recoverable catalyst in the oxidation of cyclohexene to adipic acid.
Collapse
Affiliation(s)
- Bishal Bhuyan
- Department of Chemistry
- National Institute of Technology, Silchar
- Silchar-788010
- India
| | - Bappi Paul
- Department of Chemistry
- National Institute of Technology, Silchar
- Silchar-788010
- India
| | | | | |
Collapse
|
26
|
Amézquita-Valencia M, Achonduh G, Alper H. Pd-Catalyzed Regioselective Alkoxycarbonylation of 1-Alkenes Using a Lewis Acid [SnCl2 or Ti(O(i)Pr)4] and a Phosphine. J Org Chem 2015; 80:6419-24. [PMID: 26005796 DOI: 10.1021/acs.joc.5b00851] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphine ligand mediated palladium catalyzed alkoxycarbonylation of alkenes was investigated with the objective of attaining good linear selectivity for the ester. The effect of various parameters such as solvents, additives, palladium precursors, CO pressures, and alkenes of various structural complexities were examined. The results revealed the importance of using a Lewis acid such as SnCl2 or Ti(O(i)Pr)4 in combination with a monodentate ligand such CYTOP 292 or P(p-anisyl)3 to enhance the regioselectivity for the linear isomers in the range of 70-96%.
Collapse
Affiliation(s)
- Manuel Amézquita-Valencia
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ontario K1N 6N5, Canada
| | - George Achonduh
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ontario K1N 6N5, Canada
| | - Howard Alper
- Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ontario K1N 6N5, Canada
| |
Collapse
|
27
|
Ishmuratov GY, Yakovleva MP, Botsman LP, Legostaeva YV, Nazarov IS, Baidimirov DV. Transformations of peroxide products of oleic acid ozonolysis at treatment with hydroxylamine and semicarbazide hydrochlorides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015050036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Gong H, Zeng H, Zhou F, Li CJ. Rhodium(I)-Catalyzed Regiospecific Dimerization of Aromatic Acids: Two Direct CH Bond Activations in Water. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Gong H, Zeng H, Zhou F, Li CJ. Rhodium(I)-Catalyzed Regiospecific Dimerization of Aromatic Acids: Two Direct CH Bond Activations in Water. Angew Chem Int Ed Engl 2015; 54:5718-21. [DOI: 10.1002/anie.201500220] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 11/08/2022]
|
30
|
Delplanque A, Wawrzynczyk D, Jaworski P, Matczyszyn K, Pawlik K, Buckle M, Nyk M, Nogues C, Samoc M. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles. PLoS One 2015; 10:e0117277. [PMID: 25748446 PMCID: PMC4351948 DOI: 10.1371/journal.pone.0117277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.
Collapse
Affiliation(s)
- Aleksandra Delplanque
- LBPA, IDA (FR3242), ENS Cachan, 61 Avenue du Président Wilson, F-94235 Cachan, France
| | - Dominika Wawrzynczyk
- Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50–370 Wroclaw, Poland
| | - Pawel Jaworski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53–114 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50–370 Wroclaw, Poland
| | - Krzysztof Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53–114 Wroclaw, Poland
- Department of Toxicology, Wrocław Medical University, Borowska 211, 50–556 Wrocław, Poland
| | - Malcolm Buckle
- LBPA, IDA (FR3242), ENS Cachan, 61 Avenue du Président Wilson, F-94235 Cachan, France
| | - Marcin Nyk
- Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50–370 Wroclaw, Poland
| | - Claude Nogues
- LBPA, IDA (FR3242), ENS Cachan, 61 Avenue du Président Wilson, F-94235 Cachan, France
| | - Marek Samoc
- Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50–370 Wroclaw, Poland
| |
Collapse
|
31
|
Behr A, Vorholt AJ, Seidensticker T. An Old Friend in a New Guise-Recent Trends in Homogeneous Transition Metal Catalysis. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Vafaeezadeh M, Mahmoodi Hashemi M. One pot oxidative cleavage of cyclohexene to adipic acid using silver tungstate nano-rods in a Brønsted acidic ionic liquid. RSC Adv 2015. [DOI: 10.1039/c5ra02339d] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first catalytic application of silver tungstate is disclosed for the synthesis of adipic acid from the oxidative cleavage of cyclohexene.
Collapse
|
33
|
Mi C, Meng XG, Liao XH, Peng X. Selective oxidative cleavage of terminal olefins into aldehydes catalyzed by copper(ii) complex. RSC Adv 2015. [DOI: 10.1039/c5ra14093e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method for oxidative CC bond cleavage of terminal olefins to aldehydes with H2O2 catalyzed by copper complex LCu consisted of copper(ii) and ligand 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,7,11,14-tetraene (L) was described.
Collapse
Affiliation(s)
- Chun Mi
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiang-Guang Meng
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao-Hong Liao
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Xiao Peng
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
34
|
|
35
|
Piccialli V. Ruthenium tetroxide and perruthenate chemistry. Recent advances and related transformations mediated by other transition metal oxo-species. Molecules 2014; 19:6534-82. [PMID: 24853716 PMCID: PMC6270930 DOI: 10.3390/molecules19056534] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022] Open
Abstract
In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C-C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII) oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP) has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO) for the mild oxidation of primary and secondary alcohols to carbonyl compounds. Its use in the oxidation of other functionalities is known and recently, its utility in new synthetic transformations has been demonstrated. New processes, synthetic applications, theoretical studies and unusual transformations, published in the last eight years (2006-2013), in the chemistry of these two oxo-species, will be covered in this review with the aim of offering a clear picture of their reactivity. When appropriate, related oxidative transformations mediated by other metal oxo-species will be presented to highlight similarities and differences. An historical overview of some aspects of the ruthenium tetroxide chemistry will be presented as well.
Collapse
Affiliation(s)
- Vincenzo Piccialli
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia 4, 80126, Napoli, Italy.
| |
Collapse
|
36
|
Behr A, Seidensticker T, Vorholt AJ. Diester monomers from methyl oleate and proline via tandem hydroaminomethylation-esterification sequence with homogeneous catalyst recycling using TMS-technique. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arno Behr
- Technische Universität Dortmund; Lehrstuhl für Technische Chemie; Dortmund Germany
| | - Thomas Seidensticker
- Technische Universität Dortmund; Lehrstuhl für Technische Chemie; Dortmund Germany
| | - Andreas J. Vorholt
- Technische Universität Dortmund; Lehrstuhl für Technische Chemie; Dortmund Germany
| |
Collapse
|
37
|
Si JC, Xing Y, Peng ML, Zhang C, Buske N, Chen C, Cui YL. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm 2014. [DOI: 10.1039/c3ce41544a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Spannring P, Bruijnincx PCA, Weckhuysen BM, Klein Gebbink RJM. Transition metal-catalyzed oxidative double bond cleavage of simple and bio-derived alkenes and unsaturated fatty acids. Catal Sci Technol 2014. [DOI: 10.1039/c3cy01095c] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Spannring P, Prat I, Costas M, Lutz M, Bruijnincx PCA, Weckhuysen BM, Klein Gebbink RJM. Fe(6-Me-PyTACN)-catalyzed, one-pot oxidative cleavage of methyl oleate and oleic acid into carboxylic acids with H2O2 and NaIO4. Catal Sci Technol 2014. [DOI: 10.1039/c3cy00851g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Synthesis and evaluation of N⁸-acetylspermidine analogues as inhibitors of bacterial acetylpolyamine amidohydrolase. Bioorg Med Chem 2013; 21:4530-40. [PMID: 23790721 DOI: 10.1016/j.bmc.2013.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
Polyamines are small essential polycations involved in many biological processes. Enzymes of polyamine metabolism have been extensively studied and are attractive drug targets. Nevertheless, the reversible acetylation of polyamines remains poorly understood. Although eukaryotic N(8)-acetylspermidine deacetylase activity has already been detected and studied, the specific enzyme responsible for this activity has not yet been identified. However, a zinc deacetylase from Mycoplana ramosa, acetylpolyamine amidohydrolase (APAH), has been reported to use various acetylpolyamines as substrates. The recently solved crystal structure of this polyamine deacetylase revealed the formation of an 'L'-shaped active site tunnel at the dimer interface, with ideal dimensions and electrostatic properties for accommodating narrow, flexible, cationic polyamine substrates. Here, we report the design, synthesis, and evaluation of N(8)-acetylspermidine analogues bearing different zinc binding groups as potential inhibitors of APAH. Most of the synthesized compounds exhibit modest potency, with IC₅₀ values in the mid-micromolar range, but compounds bearing hydroxamate or trifluoromethylketone zinc binding groups exhibit enhanced inhibitory potency in the mid-nanomolar range. These inhibitors will enable future explorations of acetylpolyamine function in both prokaryotes and eukaryotes.
Collapse
|
41
|
Stereoselective synthesis of (S)-oxiracetam and (S)-GABOB from (R)-glyceraldehyde acetonide. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Spannring P, Bruijnincx PCA, Weckhuysen BM, Gebbink RJMK. A metal-free, one-pot method for the oxidative cleavage of internal aliphatic alkenes into carboxylic acids. RSC Adv 2013. [DOI: 10.1039/c3ra40324f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Godard A, De Caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z. New Environmentally Friendly Oxidative Scission of Oleic Acid into Azelaic Acid and Pelargonic Acid. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2134-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Saedi Z, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I. MIL-101 metal–organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. CATAL COMMUN 2012. [DOI: 10.1016/j.catcom.2011.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
45
|
Johansen KT, Wubshet SG, Nyberg NT, Jaroszewski JW. From retrospective assessment to prospective decisions in natural product isolation: HPLC-SPE-NMR analysis of Carthamus oxyacantha. JOURNAL OF NATURAL PRODUCTS 2011; 74:2454-2461. [PMID: 22060189 DOI: 10.1021/np200780m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An extract of Carthamus oxyacantha (wild safflower) was investigated using two approaches: a traditional, nontarget fractionation by VLC and HPLC, and the hyphenated technique HPLC-PDA-HRMS-SPE-NMR followed by targeted isolation of selected constituents for inclusion in a screening library of pure natural products. While the nontarget fractionation involved considerable time spent on pursuing fractions containing well-known or undesired compounds, the hyphenated analysis was considerably faster and required less solvent and other consumables. The results were used to design and execute an optimized, HPLC-HRMS-guided, targeted isolation scheme aiming exclusively at a series of identified spiro compounds. Thus, HPLC-PDA-HRMS-SPE-NMR is a dereplication technique of choice, allowing economical acquisition of comprehensive data about compounds in crude extracts, which can be used for rational, prospective decisions about further isolation efforts. A total of 15 compounds were identified in the extract. Six spiro compounds, of which four have not previously been characterized, and tracheloside (a lignin glucoside) are presented with assigned 1H and 13C chemical shifts.
Collapse
Affiliation(s)
- Kenneth T Johansen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
46
|
Al Hussainy R, Verbeek J, van der Born D, Braker AH, Leysen JE, Knol RJ, Booij J, Herscheid J(KDM. Design, Synthesis, Radiolabeling, and in Vitro and in Vivo Evaluation of Bridgehead Iodinated Analogues of N-{2-[4-(2-Methoxyphenyl)piperazin-1-yl]ethyl}-N-(pyridin-2-yl)cyclohexanecarboxamide (WAY-100635) as Potential SPECT Ligands for the 5-HT1A Receptor. J Med Chem 2011; 54:3480-91. [DOI: 10.1021/jm1009956] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rana Al Hussainy
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Joost Verbeek
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Dion van der Born
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Anton H. Braker
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Josée E. Leysen
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Remco J. Knol
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J. (Koos) D. M. Herscheid
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
47
|
Yamamoto N, Obora Y, Ishii Y. Iridium-catalyzed oxidative methyl esterification of primary alcohols and diols with methanol. J Org Chem 2011; 76:2937-41. [PMID: 21413815 DOI: 10.1021/jo2003264] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative methyl esterification of primary alcohols and diols with methanol was successfully achieved, using acetone as a hydrogen acceptor, under the influence of an iridium complex combined with 2-(methylamino)ethanol (MAE) as catalyst.
Collapse
Affiliation(s)
- Nobuyuki Yamamoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | |
Collapse
|
48
|
Köckritz A, Martin A. Synthesis of azelaic acid from vegetable oil-based feedstocks. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.201000117] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Catalytic oxidative cleavage of olefins by RuO4 organic solvent-free under ultrasonic irradiation. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.04.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Baker RJ, McCabe T, O’Brien JE, Ogilvie HV. Thermomorphic metal scavengers: A synthetic and multinuclear NMR study of highly fluorinated ketones and their application in heavy metal removal. J Fluor Chem 2010. [DOI: 10.1016/j.jfluchem.2010.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|