1
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Rahmanzadeh A, Shirini F, Tajik H, Daneshvar N. Comparison of the Accelerating Effects of Two Ionic Liquids in the Oxidation of Alcohols. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Akram Rahmanzadeh
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Hassan Tajik
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Nader Daneshvar
- Department of Chemistry, College of Sciences, University of Guilan, University Campus 2, Rasht, Iran
| |
Collapse
|
3
|
Deepa M, Uthayanila S, Ganesh GS, Priya RS, Karthikeyan P. Excellent Eco-friendly Selective Alcohols Oxidation by an Acid Functionalized
Imidazolium Based Ionic Liquid. CURRENT ORGANOCATALYSIS 2022. [DOI: 10.2174/2213337208666210602152837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
A green route for the oxidation of alcohols to corresponding carbonyl compounds in room temperature ionic liquid ([CEMIM]BH4) was developed by using hydrogen peroxide as the oxygen source. In aqueous solution at room temperature, 0.2 mol% of ([CEMIM]BH4) showed excellent catalytic properties for selective oxidation of aromatic and aliphatic alcohols
Background:
One of the vital reactions in organic synthesis is the oxidation of alcohols to carbonyl compounds. In particular, the conversion of primary alcohols to aldehydes has received a variety of applications as they are used as intermediates in fine chemicals mostly for the perfume industry.
Objective:
In the present work, we have reported an effective green route for the selective oxidation of alcohols to the carbonyl compounds using peroxide in an ionic liquid 1-carboxyethyl-3-methyl-imidazolium tetrahydroborate ([CEMIM]BH4)
Methods::
A mixture of alcohol (2 mmol), ([CEMIM]BH4) (0.2 mol%), H2O2 (2 mmol) were stirred thoroughly with the help of a magnetic stirrer for 10 min at ambient temperature
Results:
The catalytic activity of ([CEMIM]BH4) is very effective, which reflects its good solvating nature during the oxidation.
Conclusion:
In conclusion, the series of experiments described represents a useful method for the oxidation of primary and secondary alcohols to carbonyl compounds at room temperature. The catalyst can be easily prepared and is therefore extremely cost-effective. The rapid reaction times for the substrates mean a large number of materials may be screened in parallel over a short period of time.
Collapse
Affiliation(s)
- Manickam Deepa
- PG and Research Department of Chemistry Pachaiyappas College Campus, University of Madras Chennai-600 030,
Tamilnadu, India
| | - Selvarasu Uthayanila
- Department of Chemistry, Pachaiyappas College for Women Campus, University of Madras,
Kanchipuram- 631501 Tamilnadu, India
| | - Gopalsamy Selvaraj Ganesh
- PG and Research Department of Chemistry Pachaiyappas College Campus, University of Madras Chennai-600 030,
Tamilnadu, India
| | - Ramasamy Shanmuga Priya
- PG and Research Department of Chemistry Pachaiyappas College Campus, University of Madras Chennai-600 030,
Tamilnadu, India
| | - Parasuraman Karthikeyan
- PG and Research Department of Chemistry Pachaiyappas College Campus, University of Madras Chennai-600 030,
Tamilnadu, India
| |
Collapse
|
4
|
Prakash N, Rajeev R, John A, Vijayan A, George L, Varghese A. 2,2,6,6‐Tetramethylpiperidinyloxyl (TEMPO) Radical Mediated Electro‐Oxidation Reactions: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nishitha Prakash
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Rijo Rajeev
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Anjali John
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Ajesh Vijayan
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Louis George
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Anitha Varghese
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| |
Collapse
|
5
|
Kargar H, Bazrafshan M, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Rudbari HA, Munawar KS, Ashfaq M, Tahir MN. Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity of novel oxovanadium and dioxomolybdenum complexes with ONO tridentate Schiff base ligand. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Muntzeck M, Pippert F, Wilhelm R. Tetraalkylammonium-based ionic liquids for a RuCl3 catalyzed C–H activated homocoupling. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Abstract
The oxidation of alcohols to the corresponding carbonyl products is an important organic transformation and the products are used in a variety of applications. The development of catalytic methods for selective alcohol oxidation have garnered significant attention in an attempt to find a more sustainable method without any limitations. Copper, in combination with 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) and supported by organic ligands, have emerged as the most effective catalysts for selective alcohol oxidation and these catalyst systems are frequently compared to galactose oxidase (GOase). The efficiency of GOase has led to extensive research to mimic the active sites of these enzymes, leading to a variety of Cu/TEMPO· catalyst systems being reported over the years. The mechanistic pathway by which Cu/TEMPO· catalyst systems operate has been investigated by several research groups, which led to partially contradicting mechanistic description. Due to the disadvantages and limitations of employing TEMPO· as co-catalyst, alternative nitroxyl radicals or in situ formed radicals, as co-catalysts, have been successfully evaluated in alcohol oxidation. Herein we discuss the development and mechanistic elucidation of Cu/TEMPO· catalyst systems as biomimetic alcohol oxidation catalysts.
Collapse
|
8
|
Abstract
Abstract
In China, the rapid development greatly promotes the national economic power and living standard but also inevitably brings a series of environmental problems. In order to resolve these problems fundamentally, Chinese scientists have been undertaking research in the area of green chemical engineering (GCE) for many years and achieved great progresses. In this paper, we reviewed the research progresses related to GCE in China and screened four typical topics related to the Chinese resources characteristics and environmental requirements, i.e. ionic liquids and their applications, biomass utilization and bio-based materials/products, green solvent-mediated extraction technologies, and cold plasmas for coal conversion. Afterwards, the perspectives and development tendencies of GCE were proposed, and the challenges which will be faced while developing available industrial technologies in China were mentioned.
Collapse
|
9
|
Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hazi Ahmad Beejapur
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kecheng Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
10
|
Niu P, Liu X, Shen Z, Li M. Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution. Molecules 2018; 24:E100. [PMID: 30597882 PMCID: PMC6337132 DOI: 10.3390/molecules24010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The ketones was successfully prepared from secondary alcohols using 9-azabicyclo[3.3.1]nonane-N-oxyl (ABNO) as the catalyst and 2,6-lutidine as the base in acetonitrile solution. The electrochemical activity of ABNO for oxidation of 1-phenylethanol was investigated by cyclic voltammetry, in situ Fourier transform infrared spectroscopy (FTIR) and constant current electrolysis experiments. The resulting cyclic voltammetry indicated that ABNO exhibited much higher electrochemical activity when compared with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under the similar conditions. A reasonable reaction mechanism of the electrocatalytic oxidation of 1-phenylethanol to acetophenone was proposed. In addition, a series of secondary alcohols could be converted to the corresponding ketones at room temperature in 80⁻95% isolated yields.
Collapse
Affiliation(s)
- Pengfei Niu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Xin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
11
|
Affiliation(s)
- Kun Dong
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomin Liu
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haifeng Dong
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangping Zhang
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Suojiang Zhang
- State Key Laboratory of Multiphase
Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process,
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Polyvinylpolypyrrolidoniume tribromide (PVP-Br 3 ) as efficient and metal-free agent for the selective oxidation of alcohols, trimethylsilyl ethers and oximes under mild conditions. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Dai C, Zhang J, Huang C, Lei Z. Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chem Rev 2017; 117:6929-6983. [DOI: 10.1021/acs.chemrev.7b00030] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chengna Dai
- State Key Laboratory of Chemical Resource
Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource
Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Chongpin Huang
- State Key Laboratory of Chemical Resource
Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource
Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| |
Collapse
|
14
|
Hirashita T, Nakanishi M, Uchida T, Yamamoto M, Araki S, Arends IWCE, Sheldon RA. Ionic TEMPO in Ionic Liquids: Specific Promotion of the Aerobic Oxidation of Alcohols. ChemCatChem 2016. [DOI: 10.1002/cctc.201600491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsunehisa Hirashita
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Makoto Nakanishi
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Tomoya Uchida
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Masakazu Yamamoto
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Shuki Araki
- Graduate School of Engineering; Nagoya Institute of Technology; Gokiso-cho, Showa-ku Nagoya 466-8555 Japan
| | - Isabel W. C. E. Arends
- Biocatalysis and Organic Chemistry; Delft University of Technology; Julianalaan 136 2628 BL Delft The Netherlands
| | - Roger A. Sheldon
- Biocatalysis and Organic Chemistry; Delft University of Technology; Julianalaan 136 2628 BL Delft The Netherlands
- School of Chemistry; University of the Witwatersrand; Johannesburg 2050 Republic of South Africa
| |
Collapse
|
15
|
Yao SG, Meier MS, Pace III RB, Crocker M. A comparison of the oxidation of lignin model compounds in conventional and ionic liquid solvents and application to the oxidation of lignin. RSC Adv 2016. [DOI: 10.1039/c6ra18806k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The oxidation of lignin model compounds in ionic liquid solvents was investigated as a prelude to the oxidation of lignin in these solvents where the polymer is appreciably soluble.
Collapse
Affiliation(s)
- Soledad G. Yao
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Mark S. Meier
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | | | - Mark Crocker
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
- Center for Applied Energy Research
| |
Collapse
|
16
|
Moriyama K, Takemura M, Togo H. Selective Oxidation of Alcohols with Alkali Metal Bromides as Bromide Catalysts: Experimental Study of the Reaction Mechanism. J Org Chem 2014; 79:6094-104. [DOI: 10.1021/jo5008064] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department
of Chemistry, Graduate School of Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Misato Takemura
- Department
of Chemistry, Graduate School of Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hideo Togo
- Department
of Chemistry, Graduate School of Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Shen J, Sun J, Qin S, Chu C, Liu R. 4-Benzamido-TEMPO Catalyzed Oxidation of a Broad Range of Alcohols to the Carbonyl Compounds with NaBrO3under Mild Conditions. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Burange AS, Jayaram RV, Shukla R, Tyagi AK. Oxidation of benzylic alcohols to carbonyls using tert-butyl hydroperoxide over pure phase nanocrystalline CeCrO3. CATAL COMMUN 2013. [DOI: 10.1016/j.catcom.2013.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Zhang H, Fu L, Zhong H. Silica gel-supported TEMPO with adsorbed NOx for selective oxidation of alcohols under mild conditions. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60657-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yu Y, Gao B, Li Y. Immobilized 2,2,6,6-tetramethyl-piperidinyl-1-oxy catalyst on polymer microspheres and its catalytic oxidation of benzyl alcohol with molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60651-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Soroceanu A, Cazacu M, Shova S, Turta C, Kožíšek J, Gall M, Breza M, Rapta P, Mac Leod TCO, Pombeiro AJL, Telser J, Dobrov AA, Arion VB. Copper(II) Complexes with Schiff Bases Containing a Disiloxane Unit: Synthesis, Structure, Bonding Features and Catalytic Activity for Aerobic Oxidation of Benzyl Alcohol. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201080] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Lim CM, Ha SJ, Lee JC. Aerobic Oxidation of Benzylic Alcohols with Nitric Acid/Copper Bromide(II) in Ionic Liquid. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.12.4258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ignatowska J, Shyshkov O, Zipplies T, Hintzer K, Röschenthaler GV. TEMPO mediated oxidation of fluorinated alcohols to carboxylic acids. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Zhou G, Zhang Z, Feng X, Dang B, Li X, Sun Y. Ionic liquids promoted the C H oxidation of alcohols to carbonyl compounds using a new polysiloxane-supported (salen)chromium(III) catalyst. CATAL COMMUN 2012. [DOI: 10.1016/j.catcom.2012.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
25
|
Affiliation(s)
- Jason P. Hallett
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tom Welton
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
26
|
Tebben L, Studer A. Nitroxides: applications in synthesis and in polymer chemistry. Angew Chem Int Ed Engl 2011; 50:5034-68. [PMID: 21538729 DOI: 10.1002/anie.201002547] [Citation(s) in RCA: 513] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Indexed: 01/23/2023]
Abstract
This Review describes the application of nitroxides to synthesis and polymer chemistry. The synthesis and physical properties of nitroxides are discussed first. The largest section focuses on their application as stoichiometric and catalytic oxidants in organic synthesis. The oxidation of alcohols and carbanions, as well as oxidative C-C bond-forming reactions are presented along with other typical oxidative transformations. A section is also dedicated to the extensive use of nitroxides as trapping reagents for C-centered radicals in radical chemistry. Alkoxyamines derived from nitroxides are shown to be highly useful precursors of C-centered radicals in synthesis and also in polymer chemistry. The last section discusses the basics of nitroxide-mediated radical polymerization (NMP) and also highlights new developments in the synthesis of complex polymer architectures.
Collapse
Affiliation(s)
- Ludger Tebben
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | | |
Collapse
|
27
|
Hallett JP, Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem Rev 2011; 111:3508-76. [PMID: 21469639 DOI: 10.1021/cr1003248] [Citation(s) in RCA: 2696] [Impact Index Per Article: 192.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jason P. Hallett
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Tom Welton
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
28
|
A Synergic Blend of Newly Isolated Pseudomonas mandelii KJLPB5 and [hmim]Br for Chemoselective 2° Aryl Alcohol Oxidation in H2O2: Synthesis of Aryl Ketone or Aldehydes via Sequential Dehydration-Oxidative C=C Cleavage. Catal Letters 2011. [DOI: 10.1007/s10562-010-0542-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Wertz S, Studer A. Hydroxylamine as a Source for Nitric Oxide in Metal-Free 2,2,6,6- Tetramethylpiperidine N-Oxyl Radical (TEMPO) Catalyzed Aerobic Oxidation of Alcohols. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Metal-free activation of H2O2 by synergic effect of ionic liquid and microwave: chemoselective oxidation of benzylic alcohols to carbonyls and unexpected formation of anthraquinone in aqueous condition. Mol Divers 2010; 15:687-95. [DOI: 10.1007/s11030-010-9292-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
|
31
|
Hossain MM, Shyu SG. Efficient and Selective Aerobic Alcohol Oxidation Catalyzed by Copper(II)/2,2,6,6,-Tetramethylpiperidine-1-oxyl at Room Temperature. Adv Synth Catal 2010. [DOI: 10.1002/adsc.201000290] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Herath AC, Becker JY. Electrochemical study of tris(4-bromophenyl)amine and 2,2,6,6-tetramethylpiperidine-1-oxyl in room-temperature ionic liquids. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Liu Q, Lu M, Yang F, Wei W, Sun F, Yang Z, Huang S. Aerobic Oxidation of Benzylic Halides to Carbonyl Compounds with Molecular Oxygen Catalyzed by TEMPO/KNO2in Aqueous Media. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903040245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Li Y, Ye H, Zeng P, Qi F. Volumetric Properties of Binary Mixtures of the Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate with Aniline. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-009-9494-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R. Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900662] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Lindner JP, Röben C, Studer A, Stasiak M, Ronge R, Greiner A, Wendorff HJ. Reusable Catalysts Based on Dendrimers Trapped in Poly(p-xylylene) Nanotubes. Angew Chem Int Ed Engl 2009; 48:8874-7. [DOI: 10.1002/anie.200903448] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Lindner JP, Röben C, Studer A, Stasiak M, Ronge R, Greiner A, Wendorff HJ. In Poly(p-xylylen)-Nanoröhren eingeschlossene Dendrimere als wiederverwendbare Katalysatoren. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK. Biocatalytic Promiscuity of Lipase in Chemoselective Oxidation of Aryl Alcohols/Acetates: A Unique Synergism of CAL-B and [hmim]Br for the Metal-Free H2O2 Activation. Org Lett 2009; 11:4846-8. [DOI: 10.1021/ol901917e] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Upendra K. Sharma
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur-176061 (H.P.), India
| | - Nandini Sharma
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur-176061 (H.P.), India
| | - Rakesh Kumar
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur-176061 (H.P.), India
| | - Rajesh Kumar
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur-176061 (H.P.), India
| | - Arun K. Sinha
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur-176061 (H.P.), India
| |
Collapse
|
39
|
Yavari I, Karimi E. N-Hydroxyphthalimide-Catalyzed Oxidative Production of Phthalic Acids from Xylenes Using O2/HNO3 in an Ionic Liquid. SYNTHETIC COMMUN 2009. [DOI: 10.1080/00397910902770461] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Issa Yavari
- a Chemistry Department , Tarbiat Modares University , Tehran, Iran
| | - Elham Karimi
- a Chemistry Department , Tarbiat Modares University , Tehran, Iran
- b Nonpolymeric Research Group, Petrochemical Research and Technology Company, National Petrochemical Company , Tehran, Iran
| |
Collapse
|
40
|
Dobbs AP, Jones P, Penny MJ, Rigby SE. Light-fluorous TEMPO: reagent, spin trap and stable free radical. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.04.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Lu Z, Ladrak T, Roubeau O, van der Toorn J, Teat SJ, Massera C, Gamez P, Reedijk J. Selective, catalytic aerobic oxidation of alcohols using CuBr2 and bifunctional triazine-based ligands containing both a bipyridine and a TEMPO group. Dalton Trans 2009:3559-70. [DOI: 10.1039/b820554j] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Dobbs AP, Penny MJ, Jones P. Novel light-fluorous TEMPO reagents and their application in oxidation reactions. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.09.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Comminges C, Barhdadi R, Doherty AP, O’Toole S, Troupel M. Mechanism of 2,2′6,6′-Tetramethylpiperidin-N-oxyl-Mediated Oxidation of Alcohols in Ionic Liquids. J Phys Chem A 2008; 112:7848-55. [DOI: 10.1021/jp801253n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clement Comminges
- Institut de Chimie et des Matériaux Paris Est (ICMPE - équipe ESO), UMR 7182, CNRS - Université Paris 12, Val de Marne, 2-8 rue H. Dunant, 94320 Thiais, France, and School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| | - Rachid Barhdadi
- Institut de Chimie et des Matériaux Paris Est (ICMPE - équipe ESO), UMR 7182, CNRS - Université Paris 12, Val de Marne, 2-8 rue H. Dunant, 94320 Thiais, France, and School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| | - Andrew P. Doherty
- Institut de Chimie et des Matériaux Paris Est (ICMPE - équipe ESO), UMR 7182, CNRS - Université Paris 12, Val de Marne, 2-8 rue H. Dunant, 94320 Thiais, France, and School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| | - Sarah O’Toole
- Institut de Chimie et des Matériaux Paris Est (ICMPE - équipe ESO), UMR 7182, CNRS - Université Paris 12, Val de Marne, 2-8 rue H. Dunant, 94320 Thiais, France, and School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| | - Michel Troupel
- Institut de Chimie et des Matériaux Paris Est (ICMPE - équipe ESO), UMR 7182, CNRS - Université Paris 12, Val de Marne, 2-8 rue H. Dunant, 94320 Thiais, France, and School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, United Kingdom
| |
Collapse
|
44
|
Herath AC, Becker JY. 2,2,6,6-Tetramethyl piperidine-1-oxyl (TEMPO)-mediated catalytic oxidation of benzyl alcohol in acetonitrile and ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate [BMIm][PF6]: Kinetic analysis. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.12.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Wu G, Wang X, Li J, Zhao N, Wei W, Sun Y. A new route to synthesis of sulphonato-salen-chromium(III) hydrotalcites: Highly selective catalysts for oxidation of benzyl alcohol to benzaldehyde. Catal Today 2008. [DOI: 10.1016/j.cattod.2007.10.085] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Dang Z, Zhang J, Ragauskas AJ. Characterizing TEMPO-mediated oxidation of ECF bleached softwood kraft pulps. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
[Bmim]BF4-immobilized rhenium-catalyzed highly efficient oxygenation of aldimines to oxaziridines using solid peroxides as oxidants. J Organomet Chem 2007. [DOI: 10.1016/j.jorganchem.2007.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Liu S, Xiao J. Toward green catalytic synthesis—Transition metal-catalyzed reactions in non-conventional media. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2007.01.003] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Affiliation(s)
- Vasile I Pârvulescu
- Department of Chemical Technology and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania. v_parvulescu@ chem.unibuc.ro
| | | |
Collapse
|
50
|
Adimurthy S, Patoliya PU. N‐Bromosuccinimide: A Facile Reagent for the Oxidation of Benzylic Alcohols to Aldehydes. SYNTHETIC COMMUN 2007. [DOI: 10.1080/00397910701239023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|