1
|
Radzikowska E, Kaczmarek R, Korczyński D, Krakowiak A, Mikołajczyk B, Baraniak J, Guga P, Wheeler KA, Pawlak T, Nawrot B. P-stereocontrolled synthesis of oligo(nucleoside N3'→O5' phosphoramidothioate)s - opportunities and limitations. RSC Adv 2020; 10:35185-35197. [PMID: 35515667 PMCID: PMC9056831 DOI: 10.1039/d0ra04987e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022] Open
Abstract
3'-N-(2-Thio-1,3,2-oxathiaphospholane) derivatives of 5'-O-DMT-3'-amino-2',3'-dideoxy-ribonucleosides (NOTP-N), that bear a 4,4-unsubstituted, 4,4-dimethyl, or 4,4-pentamethylene substituted oxathiaphospholane ring, were synthesized. Within these three series, NOTP-N differed by canonical nucleobases (i.e., AdeBz, CytBz, GuaiBu, or Thy). The monomers were chromatographically separated into P-diastereomers, which were further used to prepare NNPSN' dinucleotides (3), as well as short P-stereodefined oligo(deoxyribonucleoside N3'→O5' phosphoramidothioate)s (NPS-) and chimeric NPS/PO- and NPS/PS-oligomers. The condensation reaction for NOTP-N monomers was found to be 5-6 times slower than the analogous OTP derivatives. When the 5'-end nucleoside of a growing oligomer adopts a C3'-endo conformation, a conformational 'clash' with the incoming NOTP-N monomer takes place, which is a main factor decreasing the repetitive yield of chain elongation. Although both isomers of NNPSN' were digested by the HINT1 phosphoramidase enzyme, the isomers hydrolyzed at a faster rate were tentatively assigned the R P absolute configuration. This assignment is supported by X-ray analysis of the protected dinucleotide DMTdGiBu NPSMeTOAc, which is P-stereoequivalent to the hydrolyzed faster P-diastereomer of dGNPST.
Collapse
Affiliation(s)
- Ewa Radzikowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Dariusz Korczyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Barbara Mikołajczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Janina Baraniak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Kraig A Wheeler
- Whitworth University, Department of Chemistry 300 W. Hawthorne Rd. Spokane WA 99251 USA
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences Sienkiewicza 112 90-363 Łódź Poland
| |
Collapse
|
2
|
Simulescu V, Ilia G. Solid-phase Synthesis of Phosphorus Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190213112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solid-phase synthesis (SPS) of phosphorus-containing compounds is based mainly on the fact that the chemical process is conducted in a two-phase system. One of the components is connected via covalent bonds to a solid support, which is in general an insoluble polymer, representing the solid phase of the process. The other components involved into the process are solubilized in a solution. The method is suitable to be applied to almost any organic compounds. A common example of using solid-phase synthesis is for obtaining products nucleotide containing, similar to nucleic acids. During the whole process, the nucleotide is always on the solid phase, after the condensation reaction, except for the last step, when the synthesis is already finished. Then, the product is released and separated very easily by filtration. The obtained polymer-oligonucleotide product can participate further in condensation reactions as well. Other important biomolecules synthesized by solid-phase approach during the last decades are nucleoside di- and triphosphates, nucleoside diphosphate sugars and dinucleoside polyphosphates. Those products are precursors of deoxysugars, aminodeoxysugars, uronic acids or glycoconjugates, and are also necessary for DNA and RNA synthesis. The use of the solid-phase method in the context of immobilized oligomers is of great interest nowadays. The solid-phase synthesis offers many advantages in comparison with the conventional solution-phase method, because it takes much less time, it is highly stereoselective, the products are separated and purified usually by a simple filtration or decantation, solvents with high boiling points could be used, the whole process is based on solid polymer support and the obtained compounds should not be isolated.
Collapse
Affiliation(s)
- Vasile Simulescu
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| |
Collapse
|
3
|
Nukaga Y, Oka N, Wada T. Stereocontrolled Solid-Phase Synthesis of Phosphate/Phosphorothioate (PO/PS) Chimeric Oligodeoxyribonucleotides on an Automated Synthesizer Using an Oxazaphospholidine–Phosphoramidite Method. J Org Chem 2016; 81:2753-62. [DOI: 10.1021/acs.joc.5b02793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yohei Nukaga
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Natsuhisa Oka
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Wada
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Zhang M, Gallagher JA, Coppock MB, Pantzar LM, Williams ME. Cooperative Assembly of Zn Cross-Linked Artificial Tripeptides with Pendant Hydroxyquinoline Ligands. Inorg Chem 2012; 51:11315-23. [DOI: 10.1021/ic3004504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meng Zhang
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University
Park, Pennsylvania 16802, United States
| | - Joy A. Gallagher
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University
Park, Pennsylvania 16802, United States
| | - Matthew B. Coppock
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University
Park, Pennsylvania 16802, United States
| | - Lisa M. Pantzar
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University
Park, Pennsylvania 16802, United States
| | - Mary Elizabeth Williams
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Guga P, Koziołkiewicz M. Phosphorothioate nucleotides and oligonucleotides - recent progress in synthesis and application. Chem Biodivers 2012; 8:1642-81. [PMID: 21922655 DOI: 10.1002/cbdv.201100130] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Piotr Guga
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, PL-90-363 Łódź.
| | | |
Collapse
|
6
|
Gallagher JA, Levine LA, Williams ME. Anion Effects in Cu-Crosslinked Palindromic Artificial Tripeptides with Pendant Bpy Ligands. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
A nucleotide-independent nitroxide probe reports on site-specific stereomeric environment in DNA. Biophys J 2011; 99:2180-9. [PMID: 20923652 DOI: 10.1016/j.bpj.2010.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022] Open
Abstract
In this report, stereospecific structural and dynamic features in DNA are studied using the site-directed spin labeling technique. A stable nitroxide radical, 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a), was attached postsynthetically to phosphorothioates that were chemically introduced, one at a time, at five sites of a DNA duplex. The two phosphorothioate diastereomers (R(p) or S(p)) were separated, and nitroxide rotational motions were monitored using electron paramagnetic resonance spectroscopy. The resulting spectra vary according to diastereomer identity and location of the labeling site, with R(p)-R5a spectra effectively reporting on local DNA structural features and S(p)-R5a spectra sensing variations in local DNA motions. This establishes R(p)- and S(p)-R5a as unique probes for investigating nucleic acids in a site- and stereospecific manner, which may aid studies of stereospecific DNA/protein interactions. In addition, weighted averages of individual R(p) and S(p) spectra match those of R5a attached to mixed diastereomers. This suggests that R5a linked to mixed diastereomers reports on the composite behaviors of R(p)- and S(p)-R5a and is useful in initial probing of the DNA local environment. This work advances understanding of R5a/DNA coupling, and is a key step forward in developing a nucleotide-independent spectroscopic probe for studying nucleic acids.
Collapse
|
8
|
Nawrot B, Rebowska B. DNA oligonucleotides containing stereodefined phosphorothioate linkages in selected positions. ACTA ACUST UNITED AC 2009; Chapter 4:Unit 4.34. [PMID: 19319859 DOI: 10.1002/0471142700.nc0434s36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes a method for the synthesis of DNA chimeric PO/PS-oligonucleotides with a stereodefined phosphorothioate bond in the selected position. Diastereomerically pure 5'-O-DMTr-N-protected-deoxyribonucleoside-3'-O-(2-thio-spiro-4,4-pentamethylene-1,3,2-oxathiaphospholane)s obtained according to the previously described protocol (UNIT 4.17) are transformed via a stereospecific 1,3,2-oxathiaphospholane-ring opening condensation into the corresponding dinucleoside phosphorothioates. Such dimers cannot be introduced into an oligonucleotide chain via the phosphoramidite approach since the unprotected P-S(-) bond is easily oxidized during routine I(2)/Py/water oxidation of the phosphite function. In the methodology described here, the reversible alkylation of the PS function is applied. Subsequently, the 3'-phosphoramidites of such PS-protected dimers prepared in situ are used for routine synthesis of chimeric PO/PS-oligonucleotides according to the phosphoramidite method. The presence of the alkylated PS-function requires modified conditions for oligonucleotide deprotection and cleavage from the solid support. Detailed procedures for the synthesis of PS-dimers and their incorporation into an oligonucleotide chain, as well as deprotection/purification steps are presented.
Collapse
Affiliation(s)
- Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | |
Collapse
|
9
|
Oka N, Yamamoto M, Sato T, Wada T. Solid-phase synthesis of stereoregular oligodeoxyribonucleoside phosphorothioates using bicyclic oxazaphospholidine derivatives as monomer units. J Am Chem Soc 2008; 130:16031-7. [PMID: 18980312 DOI: 10.1021/ja805780u] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleoside 3'-O-bicylic oxazaphospholidine derivatives were designed as monomer units for a solid-phase synthesis of stereoregular oligodeoxyribonucleoside phosphorothioates (PS-ODNs). The trans-isomers of appropriately designed nucleoside 3'-O-bicyclic oxazaphospholidine derivatives were generated exclusively by the reaction between the 3'-OH of the corresponding protected nucleosides and 2-chloro-1,3,2-oxazaphospholidine derivatives. The resultant trans-oxazaphospholidine isomers were configurationally stable, and their diastereopurity was not impaired by epimerization in the presence of an acidic activator during the condensation on a solid support. As a result, the formation of both (Rp)- and (Sp)-phosphorothioate internucleotide linkages by using the oxazaphospholidine monomers and the acidic activator proceeded without any loss of diastereopurity (diastereoselectivity > or = 99:1). In addition, ab initio molecular orbital calculations showed that the epimerization of oxazaphospholidine derivatives was most likely to proceed via an edge inversion process that was accelerated by N-protonation. The calculations rationalized not only the relations between the ring structure and the configurational stability of the oxazaphospholidines observed in this study but also the observations reported in the literature that the inversion of tricoordinated organophosphorus compounds were accelerated by acids or nucleophiles.
Collapse
Affiliation(s)
- Natsuhisa Oka
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 702, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
10
|
Significance of stereochemistry of 3'-terminal phosphorothioate-modified primer in DNA polymerase-mediated chain extension. Mol Biotechnol 2008; 40:119-26. [PMID: 18769882 DOI: 10.1007/s12033-008-9096-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/20/2008] [Indexed: 10/21/2022]
Abstract
Influence of stereochemistry of the 3'-terminal phosphorothioate (PS)-modified primers was studied in a single base extension (SBE) assay to evaluate any improvements in specificity. SBE reactions were catalyzed by members of the high fidelity Pfu family of DNA polymerases with (exo+) or without (exo-) 3' --> 5' exonucleolytic activity. The diastereomerically pure PS-labeled primers used in these studies were obtained either by the stereospecific chemical synthesis invented in our laboratory or by the more conventional ion-exchange chromatographic method for separation of a mixture of diastereomers (R(P) and S(P)). When the SBE reaction was performed in the presence of mispaired 2'-deoxyribonucleoside triphosphates (dNTPs), the "racemic" 3'-phosphorothioate primer mixture resulted in a lower level of 3' --> 5' exonuclease-mediated cleavage products in comparison to the SBE reactions carried out with the corresponding unmodified primer. When the diastereomerically pure RP 3'-phosphorothioate primer was examined, the results were largely the same as for the racemic 3'-phosphorothioate primer mixture. In contrast, a 3'-PS primer of S(P) configuration displayed significantly improved performance in the SBE reaction. This included the lack of 3' --> 5' proofreading products, less mispriming, and improved yield of incorporation of the correct nucleotide.
Collapse
|
11
|
1,3,2-Oxathiaphospholane approach to the synthesis of P-chiral stereodefined analogs of oligonucleotides and biologically relevant nucleoside polyphosphates. PURE APPL CHEM 2008. [DOI: 10.1351/pac200880081859] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the various classes of modified nucleotides and oligonucleotides, phosphorothioate analogs, in which the sugar-phosphate backbone is modified by the substitution of a sulfur atom for one of the nonbridging oxygen atoms, have been most extensively studied in both in vitro and in vivo experiments. However, this substitution induces P-chirality of the dinucleoside phosphorothioate moiety. Consequently, even short phosphorothioate oligonucleotides synthesized using standard chemical methods exist as mixtures of many diastereoisomers. In our laboratory, the oxathiaphospholane (OTP) method has been developed for a stereocontrolled synthesis of oligo(deoxyribonucleoside phosphorothioate)s. Recently, this approach has been extended to ribonucleoside derivatives, and stereodefined phosphorothioate diribonucleotides were incorporated into oligomers suitable for mechanistic studies on deoxyribozymes. Next, it was found that the OTP ring can be opened with nucleophiles as weak as the phosphate or pyrophosphate anion, giving rise to nucleoside α-thiopolyphosphates. Surprisingly, the reaction between nucleoside OTP and O,O-dialkyl H-phosphonate or O,O-dialkyl H-phosphonothioate led to nucleoside 5'-O-(α-thio-β-O,O-dialkyl-hypophosphate) or 5'-O-(α,β-dithio-β-O,O-dialkyl-hypophosphate), respectively, i.e., derivatives containing a direct P-P bond.
Collapse
|
12
|
Abstract
The synthesis of modified nucleic acids has been the subject of much study ever since the structure of DNA was elucidated by Watson and Crick at Cambridge and Wilkins and Franklin at King's College over half a century ago. This review describes recent developments in the synthesis and application of these artificial nucleic acids, predominantly the phosphoramidites which allow for easy inclusion into oligonucleotides, and is divided into three separate sections. Firstly, modifications to the base portion will be discussed followed secondly by modifications to the sugar portion. Finally, changes in the type of nucleic acid linker will be discussed in the third section. Peptide Nucleic Acids (PNAs) are not discussed in this review as they represent a separate and large area of nucleic acid mimics.
Collapse
Affiliation(s)
- Alexander J A Cobb
- School of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AD, UK.
| |
Collapse
|
13
|
Nawrot B, Widera K, Wojcik M, Rebowska B, Nowak G, Stec WJ. Mapping of the functional phosphate groups in the catalytic core of deoxyribozyme 10-23. FEBS J 2007; 274:1062-72. [PMID: 17250742 DOI: 10.1111/j.1742-4658.2007.05655.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA phosphodiester bond cleavage activity of a series of 16 thio-deoxyribozymes 10-23, containing a P-stereorandom single phosphorothioate linkage in predetermined positions of the catalytic core from P1 to P16, was evaluated under single-turnover conditions in the presence of either 3 mM Mg(2+) or 3 mM Mn(2+). A metal-specificity switch approach permitted the identification of nonbridging phosphate oxygens (proR(P) or proS(P)) located at seven positions of the core (P2, P4 and P9-13) involved in direct coordination with a divalent metal ion(s). By contrast, phosphorothioates at positions P3, P6, P7 and P14-16 displayed no functional relevance in the deoxyribozyme-mediated catalysis. Interestingly, phosphorothioate modifications at positions P1 or P8 enhanced the catalytic efficiency of the enzyme. Among the tested deoxyribozymes, thio-substitution at position P5 had the largest deleterious effect on the catalytic rate in the presence of Mg(2+), and this was reversed in the presence of Mn(2+). Further experiments with thio-deoxyribozymes of stereodefined P-chirality suggested direct involvement of both oxygens of the P5 phosphate and the proR(P) oxygen at P9 in the metal ion coordination. In addition, it was found that the oxygen atom at C6 of G(6) contributes to metal ion binding and that this interaction is essential for 10-23 deoxyribozyme catalytic activity.
Collapse
Affiliation(s)
- Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of the Polish Academy of Sciences, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Hayakawa Y, Hirabayashi Y, Hyodo M, Yamashita S, Matsunami T, Cui DM, Kawai R, Kodama H. A Strategy for the Stereoselective Preparation of Thymidine Phosphorothioates with the (R) or the (S) Configuration at the Stereogenic Phosphorus Atom and Their Application to the Synthesis of Oligodeoxyribonucleotides with Stereochemically Pure Phosphate/Phosphorothioate Chimeric Backbones. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|