1
|
Trobe M, Vareka M, Schreiner T, Dobrounig P, Doler C, Holzinger EB, Steinegger A, Breinbauer R. A Modular Synthesis of Teraryl-Based α-Helix Mimetics, Part 3: Iodophenyltriflate Core Fragments Featuring Side Chains of Proteinogenic Amino Acids. European J Org Chem 2022; 2022:e202101278. [PMID: 35910459 PMCID: PMC9306992 DOI: 10.1002/ejoc.202101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Indexed: 11/18/2022]
Abstract
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics using a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for teraryl assembly. In previous publications we have introduced the methodology of 4-iodophenyltriflates decorated with the side chains of some of the proteinogenic amino acids. We herein report the core fragments corresponding to the previously missing amino acids Arg, Asn, Asp, Met, Trp and Tyr. Therefore, our set now encompasses all relevant amino acid analogues with the exception of His. In order to be compatible with the triflate moiety, some of the nucleophilic side chains had to be provided in a protected form to serve as stable building blocks. Additionally, cross-coupling procedures for the assembly of teraryls were investigated.
Collapse
Affiliation(s)
- Melanie Trobe
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Martin Vareka
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Till Schreiner
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Patrick Dobrounig
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Carina Doler
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Ella B. Holzinger
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Andreas Steinegger
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| |
Collapse
|
2
|
Oishi T. Design and Synthesis of Artificial Ladder-Shaped Polyethers for Exploring Biological Functions. HETEROCYCLES 2019. [DOI: 10.3987/rev-18-sr(f)1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Trobe M, Breinbauer R. Improved and scalable synthesis of building blocks for the modular synthesis of teraryl-based alpha-helix mimetics. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1599-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Spanier L, Ciglia E, Hansen FK, Kuna K, Frank W, Gohlke H, Kurz T. Design, synthesis, and conformational analysis of trispyrimidonamides as α-helix mimetics. J Org Chem 2014; 79:1582-93. [PMID: 24447208 DOI: 10.1021/jo402353z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The straightforward synthesis of trispyrimidonamides as a new class of α-helix mimetics is reported. Because of the versatility of our synthetic protocol, a variety of side chains including aliphatic, basic, aromatic, and heteroaromatic residues were included. A comprehensive conformational analysis revealed that in polar solvents a trimeric compound adopts conformations that can lead to i, i + 4, i + 8, or i, i + 8 patterns of side chain orientation. This suggests that trispyrimidonamides could be promising α-helix mimetics to target hot spots that are distributed over a wider angular range of an α-helix interface than in the classical i, i + 4, i + 7 case.
Collapse
Affiliation(s)
- Lukas Spanier
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
This review covers the isolation, chemical structure, biological activity, structure activity relationships including synthesis of chemical probes, and pharmacological characterization of neuroactive marine natural products; 302 references are cited.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | |
Collapse
|
6
|
Peters M, Trobe M, Tan H, Kleineweischede R, Breinbauer R. A modular synthesis of teraryl-based α-helix mimetics, part 1: Synthesis of core fragments with two electronically differentiated leaving groups. Chemistry 2013; 19:2442-9. [PMID: 23292813 DOI: 10.1002/chem.201203005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/12/2012] [Indexed: 01/12/2023]
Abstract
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported.
Collapse
Affiliation(s)
- Martin Peters
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
7
|
Pinto Gomes C, Metz A, Bats JW, Gohlke H, Göbel MW. Modular Solid-Phase Synthesis of Teroxazoles as a Class of α-Helix Mimetics. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Alonso E, Fuwa H, Vale C, Suga Y, Goto T, Konno Y, Sasaki M, LaFerla FM, Vieytes MR, Giménez-Llort L, Botana LM. Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J Am Chem Soc 2012; 134:7467-79. [PMID: 22475455 DOI: 10.1021/ja300565t] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gambierol is a potent neurotoxin that belongs to the family of marine polycyclic ether natural products and primarily targets voltage-gated potassium channels (K(v) channels) in excitable membranes. Previous work in the chemistry of marine polycyclic ethers has suggested the critical importance of the full length of polycyclic ether skeleton for potent biological activity. Although we have previously investigated structure-activity relationships (SARs) of the peripheral functionalities of gambierol, it remained unclear whether the whole polycyclic ether skeleton is needed for its cellular activity. In this work, we designed and synthesized two truncated skeletal analogues of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound, both of which surprisingly showed similar potency to gambierol on voltage-gated potassium channels (K(v)) inhibition. Moreover, we examined the effect of these compounds in an in vitro model of Alzheimer's disease (AD) obtained from triple transgenic (3xTg-AD) mice, which expresses amyloid beta (Aβ) accumulation and tau hyperphosphorylation. In vitro preincubation of the cells with the compounds resulted in significant inhibition of K(+) currents, a reduction in the extra- and intracellular levels of Aβ, and a decrease in the levels of hyperphosphorylated tau. In addition, pretreatment with these compounds reduced the steady-state level of the N-methyl-D-aspartate (NMDA) receptor subunit 2A without affecting the 2B subunit. The involvement of glutamate receptors was further suggested by the blockage of the effect of gambierol on tau hyperphosphorylation by glutamate receptor antagonists. The present study constitutes the first discovery of skeletally simplified, designed polycyclic ethers with potent cellular activity and demonstrates the utility of gambierol and its synthetic analogues as chemical probes for understanding the function of K(v) channels as well as the molecular mechanism of Aβ metabolism modulated by NMDA receptors.
Collapse
Affiliation(s)
- Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee TK, Ahn JM. Solid-phase synthesis of tris-benzamides as α-helix mimetics. ACS COMBINATORIAL SCIENCE 2011; 13:107-11. [PMID: 21395339 DOI: 10.1021/co100056c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecules mimicking α-helices are of great interest since numerous protein-protein interactions use helical structures at the interface. With a goal of generating libraries of α-helix mimetics, an efficient solid-phase synthetic method was developed to produce tris-benzamides. The tris-benzamide scaffold was designed to place three side-chain functional groups found at the i, i + 4, and i + 7 positions of an α-helix, emulating one helical face. The synthetic strategy involves simple and iterative reactions of removal of an allyl ester, formation of an amide bond via an O → N acyl migration, and an O-alkylation. A small library of twenty tris-benzamides containing a variety of functional groups was prepared in high purity (83-99%) to demonstrate the versatility of the synthetic approach. This methodology allowed the facile and rapid construction of α-helix mimetics that would facilitate the identification of small molecules for target proteins.
Collapse
Affiliation(s)
- Tae-Kyung Lee
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jung-Mo Ahn
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
10
|
Disrupting protein-protein interactions with non-peptidic, small molecule alpha-helix mimetics. Curr Opin Chem Biol 2010; 14:341-6. [PMID: 20430687 DOI: 10.1016/j.cbpa.2010.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Many biological processes are regulated by protein-protein interactions (PPIs) and as such their misregulation can cause a multitude of diseases. Often the interactions between large proteins are mediated by small protein secondary structural domains, which project a minimum number of specifically arranged residues into the complementary surface of an interacting protein. Nature has the advantage of time, and over time has optimized those secondary structures, such as alpha-helices, beta-sheets and beta-strands, found at the interfaces of PPIs. Inspired by Nature's extensive optimization, chemists have used these secondary structures as templates in the design of small molecules that may act as structural and functional mimics of large rhenylogically organized protein secondary structures. Herein recent applications of the indane, terphenyl, terphenyl-inspired templates, polycyclic ether and benzodiazepinedione scaffolds, as non-peptidic, small molecule alpha-helix mimetics, to disrupt PPIs are detailed.
Collapse
|
11
|
Multicomponent synthesis of dihydrobenzoxazepinones, bearing four diversity points, as potential α-helix mimics. Mol Divers 2009; 14:425-42. [DOI: 10.1007/s11030-009-9210-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
|
12
|
Affiliation(s)
- V. Haridas
- Department of Chemistry and School of Biological Sciences, Indian Institute of Technology‐Delhi (IIT‐D), New Delhi‐110 016, India
| |
Collapse
|
13
|
Swamy KCK, Kumar NNB, Balaraman E, Kumar KVPP. Mitsunobu and Related Reactions: Advances and Applications. Chem Rev 2009; 109:2551-651. [PMID: 19382806 DOI: 10.1021/cr800278z] [Citation(s) in RCA: 877] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | - N. N. Bhuvan Kumar
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | - E. Balaraman
- School of Chemistry, University of Hyderabad, Hyderabad − 500046, A. P., India
| | | |
Collapse
|
14
|
Interaction of ladder-shaped polyethers with transmembrane alpha-helix of glycophorin A as evidenced by saturation transfer difference NMR and surface plasmon resonance. Bioorg Med Chem Lett 2008; 18:6115-8. [PMID: 18947999 DOI: 10.1016/j.bmcl.2008.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/27/2008] [Accepted: 10/04/2008] [Indexed: 11/22/2022]
Abstract
Ladder-shaped polyether (LSP) compounds are thought to interact with transmembrane alpha-helices, but direct evidence has scarcely obtained for these interactions. We adopted a transmembrane alpha-helix of glycophorin A, and quantitatively evaluated its interaction with LSPs such as yessotoxin (YTX), desulfated YTX and artificial LSPs, using surface plasmon resonance and saturation transfer difference NMR. As a result, dissociation constants (K(D)) of YTX and desulfated YTX to a transmembrane domain peptide of glycophorin A were determined to be in the submillimolar range. Furthermore, in saturation transfer difference NMR, the signals at the polyene side chain and the angular methyl groups of YTX were significantly attenuated, which probably comprised an interacting interface of LSPs with a transmembrane alpha-helix. These results suggest that hydrophobic interaction plays an important role in molecular recognition of the alpha-helix peptide by LSPs.
Collapse
|
15
|
Murata M, Matsumori N, Konoki K, Oishi T. Structural Features of Dinoflagellate Toxins Underlying Biological Activity as Viewed by NMR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Garner J, Harding MM. Design and synthesis of alpha-helical peptides and mimetics. Org Biomol Chem 2007; 5:3577-85. [PMID: 17971985 DOI: 10.1039/b710425a] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alpha-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein-protein and protein-nucleic acid interactions. Strategies for the rational design and synthesis of alpha-helix mimetics have not matured as well as other secondary structure mimetics such as strands and turns. This perspective will focus on developments in the design, synthesis and applications of alpha-helices and mimetics, particularly in the last 5 years. Examples where synthetic compounds have delivered promising biological results will be highlighted as well as opportunities for the design of mimetics of the type I alpha-helical antifreeze proteins.
Collapse
Affiliation(s)
- James Garner
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
17
|
Design and synthesis of simplified polycyclic ethers and evaluation of their interaction with an α-helical peptide as a model of target proteins. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Torikai K, Yari H, Mori M, Ujihara S, Matsumori N, Murata M, Oishi T. Design and synthesis of an artificial ladder-shaped polyether that interacts with glycophorin A. Bioorg Med Chem Lett 2006; 16:6355-9. [PMID: 16989999 DOI: 10.1016/j.bmcl.2006.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 08/31/2006] [Accepted: 09/02/2006] [Indexed: 10/24/2022]
Abstract
Ladder-shaped polyether (LSP) compounds, such as brevetoxins and ciguatoxins, are thought to interact with transmembrane (TM) proteins. As a model LSP compound, we designed and synthesized an artificial tetracyclic ether (1) and evaluated its interaction with glycophorin A (GpA), a membrane protein known to dimerize or oligomerize between membrane-integral alpha-helical domains. Model compound 1 was found to induce the dissociation of oligomeric GpA in a similar manner to natural LSPs when examined by SDS-PAGE. The results suggest that even an artificial tetracyclic ether possesses the ability to interact with TM proteins, presumably through the intermolecular hydrogen bonds (C(alpha)-Hcdots, three dots, centeredO) with the GXXXG motif.
Collapse
Affiliation(s)
- Kohei Torikai
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | |
Collapse
|