1
|
Kaneko M, Yamashita A, Yasuno Y, Yamauchi K, Sakai K, Oishi T. Synthesis of the MN Ring of Caribbean Ciguatoxin C-CTX-1 via Desymmetrization by Acetal Formation. Org Lett 2024; 26:855-859. [PMID: 38241474 DOI: 10.1021/acs.orglett.3c04013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The MN ring of Caribbean ciguatoxin C-CTX-1 was synthesized from a meso-syn-2,7-dimethyloxepane derivative corresponding to the M ring via desymmetrization by acetal formation with a camphor derivative, followed by construction of the N ring via the Horner-Wadsworth-Emmons reaction and acetal formation. The meso-syn-2,7-dimethyloxepane derivative was synthesized via photoinduced electrocyclization of a conjugated exo-diene under flow conditions, giving a cyclobutene derivative, followed by ring expansion via oxidative cleavage and diastereoselective reduction of a β-hydroxy ketone.
Collapse
Affiliation(s)
- Masahiro Kaneko
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Atsuhiro Yamashita
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoko Yasuno
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosei Yamauchi
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Sakai
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Moooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Sasaki M, Seida M, Umehara A. Convergent and Scalable Synthesis of the ABCDE-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2023; 88:403-418. [PMID: 36537759 DOI: 10.1021/acs.joc.2c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convergent and scalable synthesis of the ABCDE-ring fragment of Caribbean ciguatoxin C-CTX-1, the major causative toxin for ciguatera poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. The key features of the synthesis include an iterative use of 2,2,6,6-tetramethyl piperidine 1-oxyl (TEMPO)/PhI(OAc)2-mediated oxidative lactonization and Suzuki-Miyaura coupling en route to the DE-ring system and a convergent fragment coupling to form the ABCDE-ring skeleton via the Suzuki-Miyaura coupling strategy.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miku Seida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Sasaki M, Iwasaki K, Arai K, Hamada N, Umehara A. Convergent Synthesis of the HIJKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1 by a Late-Stage Reductive Olefin Coupling Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Naoya Hamada
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| |
Collapse
|
4
|
Bowen JI, Wang L, Crump MP, Willis CL. Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Org Biomol Chem 2022; 20:1150-1175. [PMID: 35029626 PMCID: PMC8827043 DOI: 10.1039/d1ob01905h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
5
|
Armbrust KW, Beaver MG, Jamison TF. Rhodium-catalyzed endo-selective epoxide-opening cascades: formal synthesis of (-)-brevisin. J Am Chem Soc 2015; 137:6941-6. [PMID: 25984951 DOI: 10.1021/jacs.5b03570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[Rh(CO)2Cl]2 is as an effective catalyst for endo-selective cyclizations and cascades of epoxy-(E)-enoate alcohols, thus enabling the synthesis of oxepanes and oxepane-containing polyethers from di- and trisubstituted epoxides. Syntheses of the ABC and EF ring systems of (-)-brevisin via all endo-diepoxide-opening cascades using this method constitute a formal total synthesis and demonstrate the utility of this methodology in the context of the synthesis of marine ladder polyether natural products.
Collapse
Affiliation(s)
- Kurt W Armbrust
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G Beaver
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy F Jamison
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Yamashita S, Takeuchi K, Koyama T, Inoue M, Hayashi Y, Hirama M. Practical route to the left wing of CTX1B and total syntheses of CTX1B and 54-deoxyCTX1B. Chemistry 2014; 21:2621-8. [PMID: 25529606 DOI: 10.1002/chem.201405629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/07/2022]
Abstract
Ciguatoxins, the principal causative agents of ciguatera seafood poisoning, are extremely large polycyclic ethers. We report herein a reliable route for constructing the left wing of CTX1B, which possesses the acid/base/oxidant-sensitive bisallylic ether moiety, by a 6-exo radical cyclization/ring-closing metathesis strategy. This new route enabled us to achieve the second-generation total synthesis of CTX1B and the first synthesis of 54-deoxyCTX1B.
Collapse
Affiliation(s)
- Shuji Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan).
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Hirama M, Yamashita S, Iijima N, Shida T. Stereoselective Synthesis of Caribbean Ciguatoxin M-Ring Using [2+2] Photocyclization. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the Year 2007. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2008.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Kwon HK, Lee YE, Lee E. Radical Cyclization of Vinylic Ethers: Expedient Synthesis of (+)-Monocerin. Org Lett 2008; 10:2995-6. [DOI: 10.1021/ol801020w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyung Kyoo Kwon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Young Eun Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Eun Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
12
|
Sasaki M, Fuwa H. Convergent strategies for the total synthesis of polycyclic ether marine metabolites. Nat Prod Rep 2008; 25:401-26. [PMID: 18389143 DOI: 10.1039/b705664h] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine polycyclic ether natural products continue to fascinate chemists and biologists due to their exceptionally large and complex molecular architectures and potent and diverse biological activities. Tremendous progress has been made over the past decade toward the total synthesis of marine polycyclic ether natural products. In this area, a convergent strategy for assembling small fragments into an entire molecule always plays a key role in successful total synthesis. This review describes our efforts to develop convergent strategies for the synthesis of polycyclic ethers and their application to the total synthesis of gambierol, gymnocin-A, and brevenal, and to the partial synthesis of the central part of ciguatoxins and the nonacyclic polyether skeleton of gambieric acids.
Collapse
Affiliation(s)
- Makoto Sasaki
- Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 1-1 Tsutsumidori-amamiya, Aoba-ku, Sendai 981-8555, Japan.
| | | |
Collapse
|
13
|
|