1
|
Stout CN, Wasfy NM, Chen F, Renata H. Charting the Evolution of Chemoenzymatic Strategies in the Syntheses of Complex Natural Products. J Am Chem Soc 2023; 145:18161-18181. [PMID: 37553092 PMCID: PMC11107883 DOI: 10.1021/jacs.3c03422] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bolstered by recent advances in bioinformatics, genetics, and enzyme engineering, the field of chemoenzymatic synthesis has enjoyed a rapid increase in popularity and utility. This Perspective explores the integration of enzymes into multistep chemical syntheses, highlighting the unique potential of biocatalytic transformations to streamline the synthesis of complex natural products. In particular, we identify four primary conceptual approaches to chemoenzymatic synthesis and illustrate each with a number of landmark case studies. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Carter N. Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA 92037, USA
| | - Nour M. Wasfy
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
2
|
Lenhof J, Hutter M, Huch V, Jauch J. Towards the Total Synthesis of Jerangolids – Synthesis of an Advanced Intermediate for the Pharmacophore Substructure. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian Lenhof
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Michael Hutter
- Center for Bioinformatics Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Volker Huch
- General and Inorganic Chemistry Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| | - Johann Jauch
- Organic Chemistry II Saarland University P.O. Box 111550 66041 Saarbrücken Germany
| |
Collapse
|
3
|
Clark SB, Storey JM, Carr JR, Madson M. Analysis of lasalocid residues in grease and fat using liquid chromatography-mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1243-8. [DOI: 10.1080/19440049.2015.1052572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
|
5
|
Jiao J, Hyodo K, Hu H, Nakajima K, Nishihara Y. Selective Synthesis of Multisubstituted Olefins Utilizing gem- and vic-Diborylated Vinylsilanes Prepared by Silylborylation of an Alkynylboronate and Diborylation of Alkynylsilanes. J Org Chem 2013; 79:285-95. [DOI: 10.1021/jo4024057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiao Jiao
- Division
of Earth, Life, and Molecular Sciences, Graduate School of Natural
Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Keita Hyodo
- Division
of Earth, Life, and Molecular Sciences, Graduate School of Natural
Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hao Hu
- Division
of Earth, Life, and Molecular Sciences, Graduate School of Natural
Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kiyohiko Nakajima
- Department
of Chemistry, Aichi University of Education, Igaya, Kariya 448-8542, Japan
| | - Yasushi Nishihara
- Division
of Earth, Life, and Molecular Sciences, Graduate School of Natural
Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- ACT-C, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Minami A, Oguri H, Watanabe K, Oikawa H. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton. Curr Opin Chem Biol 2013; 17:555-61. [DOI: 10.1016/j.cbpa.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/29/2013] [Accepted: 06/01/2013] [Indexed: 02/02/2023]
|
7
|
Wills RH, Tosin M, O'Connor PB. Structural characterization of polyketides using high mass accuracy tandem mass spectrometry. Anal Chem 2012; 84:8863-70. [PMID: 22985101 DOI: 10.1021/ac3022778] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tandem mass spectrometry techniques electron-induced dissociation (EID) and collision-activated dissociation (CAD) have been compared as tools for providing detailed structural information of polyketides. Polyketides are an important class of natural products that account for a significant proportion of the drugs currently in clinical use. Three polyketide natural products, namely erythromycin A, lasalocid A, and iso-lasalocid A, were subjected to both CAD and EID, and their fragment ions were assigned with sub-part-per-million accuracy. The number of fragment ions detected through EID was much greater than for CAD, leading to a greater amount of structural information obtained for each polyketide, albeit with a decreased signal-to-noise ratio. The effect of different bound cations on the fragment pattern of the isomers lasalocid A and iso-lasalocid A was studied, with CAD and EID performed on the [M + H](+), [M + Na](+), [M + Li](+), and [M + NH(4)](+) precursor ions. The lithiated species were found to produce the greatest degree of fragmentation and enabled detailed structural information on the isomers to be obtained. Multistage mass spectrometry (MS(3)) experiments, combining CAD and EID, could also be performed on the lithiated species, generating new fragment information which enables the two isomers to be distinguished. Combining CAD and EID for the structural characterization of polyketides will therefore be a useful tool for identifying and characterizing unknown polyketides and their biosynthetic intermediates.
Collapse
Affiliation(s)
- Rebecca H Wills
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
8
|
Minami A, Shimaya M, Suzuki G, Migita A, Shinde SS, Sato K, Watanabe K, Tamura T, Oguri H, Oikawa H. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis. J Am Chem Soc 2012; 134:7246-9. [PMID: 22506807 DOI: 10.1021/ja301386g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis.
Collapse
Affiliation(s)
- Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nishihara Y, Okada Y, Jiao J, Suetsugu M, Lan MT, Kinoshita M, Iwasaki M, Takagi K. Highly Regio- and Stereoselective Synthesis of Multialkylated Olefins through Carbozirconation of Alkynylboronates and Sequential Negishi and Suzuki-Miyaura Coupling Reactions. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Nishihara Y, Okada Y, Jiao J, Suetsugu M, Lan MT, Kinoshita M, Iwasaki M, Takagi K. Highly Regio- and Stereoselective Synthesis of Multialkylated Olefins through Carbozirconation of Alkynylboronates and Sequential Negishi and Suzuki-Miyaura Coupling Reactions. Angew Chem Int Ed Engl 2011; 50:8660-4. [DOI: 10.1002/anie.201103601] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Indexed: 11/10/2022]
|
11
|
Larghi EL, Kaufman TS. Synthesis of Oxacycles Employing the Oxa‐Pictet–Spengler Reaction: Recent Developments and New Prospects. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100271] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrique L. Larghi
- Institute of Chemistry of Rosario (IQUIR, CONICET‐UNR)and Department of Organic Chemistry, School of Pharmaceuticaland Biochemical Sciences, National University of Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina, Fax: +54‐341‐4370477, ext. 35
| | - Teodoro S. Kaufman
- Institute of Chemistry of Rosario (IQUIR, CONICET‐UNR)and Department of Organic Chemistry, School of Pharmaceuticaland Biochemical Sciences, National University of Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina, Fax: +54‐341‐4370477, ext. 35
| |
Collapse
|
12
|
Iodoolefinic polypropionate building blocks from vinyl silanes with control of geometry by solvent and by neighboring group participation. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Matsuura Y, Shichijo Y, Minami A, Migita A, Oguri H, Watanabe M, Tokiwano T, Watanabe K, Oikawa H. Intriguing Substrate Tolerance of Epoxide Hydrolase Lsd19 Involved in Biosynthesis of the Ionophore Antibiotic Lasalocid A. Org Lett 2010; 12:2226-9. [DOI: 10.1021/ol100541e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Matsuura
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshihiro Shichijo
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Migita
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Oguri
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mami Watanabe
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuo Tokiwano
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Watanabe
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Synthesis of a proposed biosynthetic intermediate of a marine cyclic ether brevisamide for study on biosynthesis of marine ladder-frame polyethers. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Vilotijevic I, Jamison T. Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900600] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Abstract
An extremophilic challenge: Stereospecific condensation of a fully functionalized ketal aldehyde and a 2,6-dihydroxybenzoic acid is the key step in the synthesis of (-)-berkelic acid confirming Fürstner's reassignment of the stereochemistry at C18 and C19, establishing the absolute stereochemistry, and tentatively assigning the stereochemistry at C22.
Collapse
Affiliation(s)
- Xiaoxing Wu
- Department of Chemistry, MS 015, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Vilotijevic I, Jamison TF. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew Chem Int Ed Engl 2009; 48:5250-81. [PMID: 19572302 PMCID: PMC2810545 DOI: 10.1002/anie.200900600] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades are proposed. We summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products.The group of polycyclic polyether natural products is of special interest owing to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, and extreme lethality. The polycyclic structural features of this class of compounds can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products.
Collapse
Affiliation(s)
- Ivan Vilotijevic
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| | - Timothy F. Jamison
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| |
Collapse
|
20
|
Smith L, Hong H, Spencer JB, Leadlay PF. Analysis of Specific Mutants in the Lasalocid Gene Cluster: Evidence for Enzymatic Catalysis of a Disfavoured Polyether Ring Closure. Chembiochem 2008; 9:2967-75. [DOI: 10.1002/cbic.200800585] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Affiliation(s)
- Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| | | |
Collapse
|