1
|
Scesa P, Nguyen H, Weiss P, Rodriguez AP, Garchow M, Ohlemacher SI, Prappas E, Caplins SA, Bewley CA, Bohnert L, Zellmer AJ, Wood EM, Schmidt EW, Krug PJ. Defensive polyketides produced by an abundant gastropod are candidate keystone molecules in estuarine ecology. SCIENCE ADVANCES 2024; 10:eadp8643. [PMID: 39475615 PMCID: PMC11524194 DOI: 10.1126/sciadv.adp8643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Secondary metabolites often function as antipredator defenses, but when bioactive at low concentrations, their off-target effects on other organisms may be overlooked. Candidate "keystone molecules" are proposed to affect community structure and ecosystem functions, generally originating as defenses of primary producers; the broader effects of animal chemistry remain largely unexplored, however. Here, we characterize five previously unreported polyketides (alderenes A to E) biosynthesized by sea slugs reaching exceptional densities (up to 9000 slugs per square meter) in Northern Hemisphere estuaries. Alderenes comprise only 0.1% of slug wet weight, yet rendered live slugs or dead flesh unpalatable to three co-occurring consumers, making a potential food resource unavailable and redirecting energy flow in critical nursery habitat. Alderenes also displaced infauna from the upper sediment of the mudflat but attracted ovipositing snails. By altering communities, such compounds may have unexpected cascading effects on processes ranging from bioturbation to reproduction of species not obviously connected to the producing organisms, warranting greater attention by ecologists.
Collapse
Affiliation(s)
- Paul Scesa
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Helen Nguyen
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Paige Weiss
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Alejandra P. Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Matthew Garchow
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Shannon I. Ohlemacher
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evangelia Prappas
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Serena A. Caplins
- Department of Population Biology, University of California at Davis, Davis, CA 95616, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laine Bohnert
- Department of Biology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - Amanda J. Zellmer
- Department of Biology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA
| | - Eric M. Wood
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick J. Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| |
Collapse
|
2
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, da Silva EB, O'Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat Commun 2024; 15:5230. [PMID: 38898025 PMCID: PMC11187115 DOI: 10.1038/s41467-024-49367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Culture-based microbial natural product discovery strategies fail to realize the extraordinary biosynthetic potential detected across earth's microbiomes. Here we introduce Small Molecule In situ Resin Capture (SMIRC), a culture-independent method to obtain natural products directly from the environments in which they are produced. We use SMIRC to capture numerous compounds including two new carbon skeletons that were characterized using NMR and contain structural features that are, to the best of our knowledge, unprecedented among natural products. Applications across diverse marine habitats reveal biome-specific metabolomic signatures and levels of chemical diversity in concordance with sequence-based predictions. Expanded deployments, in situ cultivation, and metagenomics facilitate compound discovery, enhance yields, and link compounds to candidate producing organisms, although microbial community complexity creates challenges for the later. This compound-first approach to natural product discovery provides access to poorly explored chemical space and has implications for drug discovery and the detection of chemically mediated biotic interactions.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mariam N Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Alexander B Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Mitchell N Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Tadeusz F Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Paul R Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Bogdanov A, Salib MN, Chase AB, Hammerlindl H, Muskat MN, Luedtke S, Barbosa da Silva E, O’Donoghue AJ, Wu LF, Altschuler SJ, Molinski TF, Jensen PR. Small Molecule in situ Resin Capture - A Compound First Approach to Natural Product Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530684. [PMID: 37398257 PMCID: PMC10312467 DOI: 10.1101/2023.03.02.530684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Microbial natural products remain an important resource for drug discovery. Yet, commonly employed discovery techniques are plagued by the rediscovery of known compounds, the relatively few microbes that can be cultured, and laboratory growth conditions that do not elicit biosynthetic gene expression among myriad other challenges. Here we introduce a culture independent approach to natural product discovery that we call the Small Molecule In situ Resin Capture (SMIRC) technique. SMIRC exploits in situ environmental conditions to elicit compound production and represents a new approach to access poorly explored chemical space by capturing natural products directly from the environments in which they are produced. In contrast to traditional methods, this compound-first approach can capture structurally complex small molecules across all domains of life in a single deployment while relying on Nature to provide the complex and poorly understood environmental cues needed to elicit biosynthetic gene expression. We illustrate the effectiveness of SMIRC in marine habitats with the discovery of numerous new compounds and demonstrate that sufficient compound yields can be obtained for NMR-based structure assignment. Two new compound classes are reported including one novel carbon skeleton that possesses a functional group not previously observed among natural products and a second that possesses potent biological activity. We introduce expanded deployments, in situ cultivation, and metagenomics as methods to facilitate compound discovery, enhance yields, and link compounds to producing organisms. This compound first approach can provide unprecedented access to new natural product chemotypes with broad implications for drug discovery.
Collapse
Affiliation(s)
- Alexander Bogdanov
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam N. Salib
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander B. Chase
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Earth Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mitchell N. Muskat
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Luedtke
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Elany Barbosa da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Lani F. Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J. Altschuler
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tadeusz F. Molinski
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul R. Jensen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Ma Y, Wen Y, Cheng H, Deng J, Peng Y, Bahetejiang Y, Huang H, Wu C, Yang X, Pang K. Penpolonin A-E, cytotoxic α-pyrone derivatives from Penicillium polonicum. Bioorg Med Chem Lett 2021; 40:127921. [PMID: 33705907 DOI: 10.1016/j.bmcl.2021.127921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/19/2023]
Abstract
Five new α-pyrone derivatives, named penpolonin A-E (1-5), together with two known compounds (6-7) were acquired from the endophytic fungus Penicillium polonicum isolated from the roots of Camptotheca acuminata Decne. Their structures were established by combination of NMR and HRESIMS data and the absolute configurations of 1-5 were determined by NMR calculations and comparison of experimental and calculated ECD data. Compounds 3 and 7 exhibited moderate cytotoxicity against Hep-2, TU212 human laryngeal cancer cells with IC50 values ranging from 31.6 to 45.1 μg/ml, compound 4 showed weak cytotoxicity against the Hep-2 and TU212 cell lines with IC50 values of 69.2 and 68.7 μg/ml.
Collapse
Affiliation(s)
- Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanzhang Wen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Haitao Cheng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jingtong Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yu Peng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yeerlan Bahetejiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chaoqun Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Kejian Pang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
5
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
6
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
7
|
Abstract
Marine natural products (MNPs) containing pyrone rings have been isolated
from numerous marine organisms, and also produced by marine fungi and bacteria, particularly,
actinomycetes. They constitute a versatile structure unit of bioactive natural
products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic,
neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ-
pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α-
pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production
of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones
etc. to name a few. A class of pyrone metabolites, polypropionates which have
fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some
of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria.
Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp.,
etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand
and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is
also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance,
the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews
on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported.
However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation
and detailed biological activities. This review presents a brief account of the isolation of marine metabolites
containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine
pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione,
(-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.
Collapse
Affiliation(s)
- Keisham S. Singh
- Bio-organic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa, India
| |
Collapse
|
8
|
Recent advances in the applications of Wittig reaction in the total synthesis of natural products containing lactone, pyrone, and lactam as a scaffold. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02465-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Lee J, Han C, Lee TG, Chin J, Choi H, Lee W, Paik MJ, Won DH, Jeong G, Ko J, Yoon YJ, Nam SJ, Fenical W, Kang H. Marinopyrones A–D, α-pyrones from marine-derived actinomycetes of the family Nocardiopsaceae. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Geiseler O, Podlech J. Total synthesis of infectopyrone, aplysiopsenes A–C, ent-aplysiopsene D, phomapyrones A and D, 8,9-dehydroxylarone, and nectriapyrone. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.06.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Gavagnin M. Exploring the Chemistry of Marine Opisthobranchs: Recent Results. CHEMISTRY JOURNAL OF MOLDOVA 2011. [DOI: 10.19261/cjm.2011.06(2).05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The current communication is an extended abstract of the presentation delivered on the joint Moldo-Italian seminar “New frontiers in natural product chemistry”, held in the Institute of Chemistry, Academy of Sciences of Moldova on 30th September. An overview of the recent studies conducted by our group on opisthobranch molluscs from distinct geographical areas is briefly presented.
Collapse
|
13
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 28:196-268. [PMID: 21152619 DOI: 10.1039/c005001f] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Rukachaisirikul V, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Graidist P, Sakayaroj J, Kirtikara K. Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp. PSU-F11 and PSU-F12. Arch Pharm Res 2010; 33:375-80. [DOI: 10.1007/s12272-010-0305-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/06/2010] [Accepted: 01/17/2010] [Indexed: 11/24/2022]
|
15
|
|