1
|
Qiao L, Fang J, Zhu P, Huang H, Dang C, Pang J, Gao W, Qiu X, Huang L, Li Y. A Novel Chemoenzymatic Approach to Produce Cilengitide Using the Thioesterase Domain from Microcystis aeruginosa Microcystin Synthetase C. Protein J 2020; 38:658-666. [PMID: 31435810 DOI: 10.1007/s10930-019-09864-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Modern organic chemistry faces many difficulties in the reliable production of cyclopeptides, such as poor yields and insufficient regio- and stereoselectivity. Thioesterase (TE) shows impressive stereospecificity, region- and chemoselectivity during the cyclization of peptide substrates. The biocatalytic properties of TE provide high value for industrial applications. Herein, a novel chemoenzymatic method to synthesize cilengitide is described based on the cyclic activity of the TE domain from microcystin synthetase C (McyC) of Microcystis aeruginosa. In addition, a single active site mutation in the McyC TE was engineered to generate a more effective macrocyclization catalyst. Compared to the chemical approach to synthesize cilengitide, this novel enzyme-catalysed methodology exhibits a higher synthetic efficiency with an approximately 3.4-fold higher yield (49.2%).
Collapse
Affiliation(s)
- Longliang Qiao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Peng Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China. .,Ningbo Institute of Oceanography, Ningbo, 315832, China.
| | - Hailong Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Chenyang Dang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Jianhu Pang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Weifang Gao
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, China
| | - Lili Huang
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| |
Collapse
|
2
|
Bassanini I, Hult K, Riva S. Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers. Beilstein J Org Chem 2015; 11:1583-95. [PMID: 26664578 PMCID: PMC4660951 DOI: 10.3762/bjoc.11.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters.
Collapse
Affiliation(s)
- Ivan Bassanini
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| | - Karl Hult
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy ; School of Biotechnology, Department of Industrial Biotechnology, Albanova KTH, Royal Institute of Technology, Stockholm, Sweden
| | - Sergio Riva
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco 9, Milano, Italy
| |
Collapse
|
3
|
Groussin AL, Antoniotti S. Valuable chemicals by the enzymatic modification of molecules of natural origin: terpenoids, steroids, phenolics and related compounds. BIORESOURCE TECHNOLOGY 2012; 115:237-243. [PMID: 22074904 DOI: 10.1016/j.biortech.2011.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 05/31/2023]
Abstract
A renewed interest for using natural organic molecules for the production of valuable chemicals is observed in current organic processes. Natural compounds provide the access to natural grade chemicals when submitted to physical treatments or biotechnological processes. Dealing with structurally complex molecules, they can provide complex core structures for hemisynthesis purposes, and in many instances they offer the advantage of providing sustainable processes when using renewable resources. These assets could be synergistic with the assets of biocatalytic processes, to end-up with efficient and sustainable processes in the organic synthesis of valuable products. In this review, we have gathered a selection of examples on the use of enzymes for the modification of molecules of natural origin being either purified compounds (terpenoids, steroids, phenolics) or mixtures (essential oils, natural extracts) to access fine chemicals or organic polymers.
Collapse
Affiliation(s)
- Anne-Laure Groussin
- LCMBA UMR 6001 CNRS-Université de Nice-Sophia Antipolis, Institut de Chimie de Nice, Nice, France
| | | |
Collapse
|