1
|
Heise N, Siewert B, Ströhl D, Hoenke S, Kazakova O, Csuk R. A simple but unusual rearrangement of an oleanane to a taraxerane-28,14 β -olide. Steroids 2021; 172:108853. [PMID: 33930390 DOI: 10.1016/j.steroids.2021.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Reaction of 3-O-acetyl-oleanolic acid (3) with formic acid/hydrogen peroxide at 100 °C for several hours provides an extraordinary but simple pathway to a taraxeran-28,14 β -olide type triterpenoid while the same reaction at 0 °C occurred without re-arrangement of the carbon skeleton, and an oleanane-28,13 β -olide was obtained instead. The products from these reactions were subjected to a cytotoxicity screening employing several human tumor cell lines showing the latter compound not cytotoxic while the former was cytotoxic especially for MCF-7 (breast adenocarcinoma), and FaDu (hypopharyngeal carcinoma) cells. The highest cytotoxicity, however, was observed for 3 β, 12α, 13 β -trihydroxy-oleanan-28-oic acid (6) holding with EC50 = 4.2 μM for MCF-7 tumor cells.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Bianka Siewert
- University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Center for Chemistry and Biomedicine, Innrain 80 - 82, A-6020 Innsbruck, Austria
| | - Dieter Ströhl
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
2
|
Semenova MD, Popov SA, Golubeva TS, Baev DS, Shults EE, Turks M. Synthesis and Cytotoxicity of Sulfanyl, Sulfinyl and Sulfonyl Group Containing Ursane Conjugates with 1,3,4‐Oxadiazoles and 1,2,4‐Triazoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marya D. Semenova
- Novosibirsk Institute of Organic Chemistry Acad. Lavrentyev ave. 9 Novosibirsk 630090 Russia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Acad. Lavrentyev ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 630090 Novosibirsk Russia
| | - Dmitry S. Baev
- Novosibirsk Institute of Organic Chemistry Acad. Lavrentyev ave. 9 Novosibirsk 630090 Russia
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Acad. Lavrentyev ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena Str. 3 Riga LV-1048 Latvia
| |
Collapse
|
3
|
A simple method to obtain ursolic acid. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
4
|
Bioactive Compounds from Medicinal Plants in Myanmar. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:135-251. [PMID: 33792861 DOI: 10.1007/978-3-030-59444-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myanmar is a country with rich natural resources and of these, medicinal plants play a vital role in the primary health care of its population. The people of Myanmar have used their own system of traditional medicine inclusive of the use of medicinal plants for 2000 years. However, systematic and scientific studies have only recently begun to be reported. Researchers from Japan, Germany, and Korea have collaborated with researchers in Myanmar on medicinal plants since 2000. During the past two decades, over 50 publications have been published in peer-reviewed journals. Altogether, 433 phytoconstituents, including 147 new and 286 known compounds from 26 plant species consisting of 29 samples native to Myanmar, have been collated. In this contribution, phytochemical and biological investigations of these plants, including information on traditional knowledge are compiled and discussed.
Collapse
|
5
|
Viral protein R inhibitors from Swertia chirata of Myanmar. J Biosci Bioeng 2019; 128:445-449. [DOI: 10.1016/j.jbiosc.2019.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
|
6
|
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, Moses T, Mertens J, Sonawane PD, Pauwels L, Aharoni A, Martins J, Nelson DR, Goossens A. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun 2017; 8:14153. [PMID: 28165039 PMCID: PMC5303825 DOI: 10.1038/ncomms14153] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids. Cytochrome P450 family enzymes have an essential role in the creation of triterpenoid diversity in plants. Here, the authors describe triterpenoid synthesis as mediated by CYP716 enzymes in medicinal plant species, and perform phylogenetic analysis to describe CYP716 molecular evolution in plants.
Collapse
Affiliation(s)
- Karel Miettinen
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dieter Buyst
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - Philipp Arendt
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.,Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium.,VIB Medical Biotechnology Center, B-9000 Ghent, Belgium
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Sven Sommerwerk
- Department of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Tessa Moses
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jan Mertens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Prashant D Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - José Martins
- Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
7
|
Xie LX, Zhang HC, Wang HY, Wang Y, Wang FL, Sun JY. Two new triterpenoids from Gypsophila oldhamiana. Nat Prod Res 2015; 30:1068-74. [DOI: 10.1080/14786419.2015.1107060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Long-Xiao Xie
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Hao-Chao Zhang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Hai-Yang Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Yan Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Feng-Ling Wang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| | - Jing-Yong Sun
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, P.R. China
- Key Laboratory of Rare and Uncommon Diseases of Shandong Province, Shandong Academy of Medical Sciences, Jinan, P.R. China
| |
Collapse
|
8
|
Husnutdinova EF, Lobov AN, Kukovinets OS, Kataev VE, Kazakova OB. Oxidative lactonization of oleanane and ursane acids by treating with ozone. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015020219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Oxidation of Methyl 2-Cyano-3,4-seco-4(23)-Ene-Ursolate by Ozone. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Sommerwerk S, Csuk R. Convenient and chromatography-free partial syntheses of maslinic acid and augustic acid. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Fu L, Lin QX, Liby KT, Sporn MB, Gribble GW. An efficient synthesis of methyl 2-cyano-3,12-dioxoursol-1,9-dien-28-oate (CDDU-methyl ester): analogues, biological activities, and comparison with oleanolic acid derivatives. Org Biomol Chem 2014; 12:5192-200. [PMID: 24915424 DOI: 10.1039/c4ob00679h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
An efficient synthesis of methyl 2-cyano-3,12-dioxoursol-1,9-dien-28-oate (CDDU-methyl ester) from commercially available ursolic acid, which features an oxidative ozonolysis-mediated C-ring enone formation, and provides the first access to ursolic acid-derived cyano enone analogues with C-ring activation. These new ursolic acid analogues show potent biological activities, with potency of approximately five-fold less than the corresponding oleanolic acid derivatives.
Collapse
Affiliation(s)
- Liangfeng Fu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
12
|
Pettit GR, Melody N, Hempenstall F, Chapuis JC, Groy TL, Williams L. Antineoplastic agents. 595. Structural modifications of betulin and the X-ray crystal structure of an unusual betulin amine dimer. JOURNAL OF NATURAL PRODUCTS 2014; 77:863-72. [PMID: 24694263 PMCID: PMC4010298 DOI: 10.1021/np400947d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 05/04/2023]
Abstract
The lupane-type triterpene betulin (1) has been subjected to a series of structural modifications for the purpose of evaluating resultant cancer cell growth inhibitory activity. The reaction sequence 7→11→12 was especially noteworthy in providing a betulin-derived amine dimer. Other unexpected synthetic results included the 11 and 13/14→17 conversions, which yielded an imidazo derivative. X-ray crystal structures of dimer 12 and intermediate 25 are reported. All of the betulin modifications were examined for anticancer activity against the P388 murine and human cell lines. Significant cancer cell growth inhibition was found for 4, 8, 9, 15/16, 19, 20, 24, and 26, which further defines the utility of the betulin scaffold.
Collapse
Affiliation(s)
- George R. Pettit
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Noeleen Melody
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Frank Hempenstall
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Jean-Charles Chapuis
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | - Thomas L. Groy
- Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, United States
| | | |
Collapse
|
13
|
Siewert B, Wiemann J, Köwitsch A, Csuk R. The chemical and biological potential of C ring modified triterpenoids. Eur J Med Chem 2014; 72:84-101. [PMID: 24361521 DOI: 10.1016/j.ejmech.2013.11.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 11/27/2022]
Abstract
A convenient and elegant route has been developed to separate the natural regioisomers triterpenoids ursolic acid (UA) and oleanolic acid (OA) as well as derivatives thereof. Eleven unknown derivatives of OA were designed, synthesized, and their cytotoxicity was investigated. Further sixteen compounds were prepared to correlate all compounds in a SAR study. It could be shown that C-ring modifications of OA and UA have only a moderate influence onto the cytotoxic activity of the compounds but a significant impact onto the ability to trigger apoptosis in ovarian cancer cells (cell line A2780).
Collapse
Affiliation(s)
- Bianka Siewert
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Jana Wiemann
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Alexander Köwitsch
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany.
| |
Collapse
|
14
|
Naumoska K, Simonovska B, Albreht A, Vovk I. TLC and TLC-MS screening of ursolic, oleanolic and betulinic acids in plant extracts. JPC-J PLANAR CHROMAT 2013. [DOI: 10.1556/jpc.26.2013.2.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|