1
|
Vishnu S, Maity S, Maity AC, Kumar MS, Dolai M, Nag A, Bylappa Y, Dutta G, Mukherjee B, Kumar Das A. Development of a fluorescent scaffold by utilizing quercetin template for selective detection of Hg 2+: Experimental and theoretical studies along with live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124249. [PMID: 38603957 DOI: 10.1016/j.saa.2024.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Quercetin is an important antioxidant with high bioactivity and it has been used as SARS-CoV-2 inhibitor significantly. Quercetin, one of the most abundant flavonoids in nature, has been in the spot of numerous experimental and theoretical studies in the past decade due to its great biological and medicinal importance. But there have been limited instances of employing quercetin and its derivatives as a fluorescent framework for specific detection of various cations and anions in the chemosensing field. Therefore, we have developed a novel chemosensor based on quercetin coupled benzyl ethers (QBE) for selective detection of Hg2+ with "naked-eye" colorimetric and "turn-on" fluorometric response. Initially QBE itself exhibited very weak fluorescence with low quantum yield (Φ = 0.009) due to operating photoinduced electron transfer (PET) and inhibition of excited state intramolecular proton transfer (ESIPT) as well as intramolecular charge transfer (ICT) within the molecule. But in presence of Hg2+, QBE showed a sharp increase in fluorescence intensity by 18-fold at wavelength 444 nm with high quantum yield (Φ = 0.159) for the chelation-enhanced fluorescence (CHEF) with coordination of Hg2+, which hampers PET within the molecule. The strong binding affinity of QBE towards Hg2+ has been proved by lower detection limit at 8.47 µM and high binding constant value as 2 × 104 M-1. The binding mechanism has been verified by DFT study, Cyclic voltammograms and Jobs plot analysis. For the practical application, the binding selectivity of QBE with Hg2+ has been capitalized in physiological medium to detect intracellular Hg2+ levels in living plant tissue by using green gram seeds. Thus, employing QBE as a fluorescent chemosensor for the specific identification of Hg2+ will pave the way for a novel approach to simplifying the creation of various chemosensors based on quercetin backbone for the precise detection of various biologically significant analytes.
Collapse
Affiliation(s)
- Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029 India
| | - Sibaprasad Maity
- Sagardighi Kamada Kinkar Smriti Mahavidyalaya Sagardighi, Murshidabad 742226, West Bengal, India.
| | - Annada C Maity
- Sagardighi Kamada Kinkar Smriti Mahavidyalaya Sagardighi, Murshidabad 742226, West Bengal, India
| | - Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029 India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721404, W.B., India
| | - Anish Nag
- Department of Life Science, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029
| | - Yatheesharadhya Bylappa
- Department of Life Science, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), IIT Kharagpur, India
| | | | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka, 560029 India.
| |
Collapse
|
2
|
Gawas PP, Selvaraj K, Pamanji R, Selvin J, Nutalapati V. Highly sensitive fluorescence turn-OFF and reversible chemical sensor for Hg 2+ ion based on pyrene appended 2-thiohydantoin. CHEMOSPHERE 2024; 352:141470. [PMID: 38367877 DOI: 10.1016/j.chemosphere.2024.141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.
Collapse
Affiliation(s)
- Pratiksha P Gawas
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Kasthuri Selvaraj
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Ali R, Ghannay S, Messaoudi S, Alminderej FM, Aouadi K, Saleh SM. A Reversible Optical Sensor Film for Mercury Ions Discrimination Based on Isoxazolidine Derivative and Exhibiting pH Sensing. BIOSENSORS 2022; 12:1028. [PMID: 36421146 PMCID: PMC9688351 DOI: 10.3390/bios12111028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
We developed a new optical sensor for tracing Hg(II) ions. The detection affinity examines within a concentration range of 0-4.0 µM Hg(II). The sensor film is based on Methyl 2-hydroxy-3-(((2S,2'R,3a'S,5R)-2-isopropyl-5,5'-dimethyl-4'-oxotetrahydro-2'H-spiro[cy-clohexane-1,6'-im-idazo[1,5-b]isoxazol]-2'-yl)methyl)-5-methylbenzoate (IXZD). The novel synthesized compound could be utilized as an optical turn-on chemosensor for pH. The emission intensity is highly enhanced for the deprotonated form concerning the protonated form. IXZD probe has a characteristic fluorescence peak at 481 nm under excitation of 351 nm with large Stocks shift of approximately 130 nm. In addition, the binding process of IXZD:Hg(II) presents a 1:1 molar ratio which is proved by the large quench of the 481 nm emission peak of IXZD and the growth of a new emission peak at 399 nm (blue shift). The binding configurations with one Hg(II) cation and its electronic characteristics were investigated by applying the Density Functional Theory (DFT) and the time-dependent DFT (TDDFT) calculations. Density functional theory (DFT) and the time-dependent DFT (TDDFT) theoretical results were provided to examine Hg(II)-IXZD structures and their electronic properties in solution. The developed chemical sensor was offered based on the intramolecular charge transfer (ICT) mechanism. The sensor film has a significantly low limit of detection (LOD) for Hg(II) of 0.025 μM in pH 7.4, with a relative standard deviation RSDr (1%, n = 3). Lastly, the IXZD shows effective binding affinity to mercury ions, and the binding constant Kb was estimated to be 5.80 × 105 M-1. Hence, this developed optical sensor film has a significant efficiency for tracing mercury ions based on IXZD molecule-doped sensor film.
Collapse
Affiliation(s)
- Reham Ali
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Chemistry Department, Faculty of Science, Suez University, Suez 43518, Egypt
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Sabri Messaoudi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Sciences of Bizerte, Carthage University, Bizerte 7021, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Sayed M. Saleh
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| |
Collapse
|
4
|
Mermer Z, Yavuz O, Atasen SK, Alcay Y, Yilmaz I. Architecture of multi-channel and easy-to-make sensors for selective and sensitive Hg 2+ ion recognition through Hg‒C and Hg‒N bonds of naphthoquinone-aniline/pyrene union. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124597. [PMID: 33309140 DOI: 10.1016/j.jhazmat.2020.124597] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The aim of this work is, for the first time, to develop new inexpensive, easy-to-make and multi-channel receptors, naphthoquinone-aniline/pyrene union ((Nq-An) and (Nq-Pyr)) and their Hg2+ complexes [Hg-(Nq-An)2] and [Hg-(Nq-Pyr)2] to supply an efficient solution to critical deficiencies to be encountered for Hg2+ recognition. This study is based on colorimetric, fluorometric, and voltammetric methods for determination of Hg2+ ions through Hg-C and Hg-N binding mode of the naphthoquinone-aniline/pyrene union in aqueous media. The binding mode of the receptors with Hg2+ cation was confirmed by usual characterization techniques for the synthesized Hg2+-complexes [Hg-(Nq-An)2] / [Hg-(Nq-Pyr)2] and voltammetric, 1H NMR titration experiments as well as Job's method, indicating a 2:1 complex between the receptors and Hg2+ cation. The receptors showed a considerable color switching from orange to pink along with a red-shift of absorption wavelength, and fluorescence enhancement via the Chelation Enhanced Fluorescence effect (CHEF), and distinctive changes on the voltammogram of the electroactive naphthoquinone unit with Hg2+ cation. The experiments indicate that the sensors are highly selective and sensitive toward Hg2+ among the studied metal ions in aqueous media compared with other reported Hg2+ sensors.
Collapse
Affiliation(s)
- Zeliha Mermer
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ozgur Yavuz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | | | - Yusuf Alcay
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey
| | - Ismail Yilmaz
- Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
5
|
Fluorescent, colourimetric, and ratiometric probes based on diverse fluorophore motifs for mercuric(II) ion (Hg 2+) sensing: highlights from 2011 to 2019. CHEMICAL PAPERS 2020; 74:3195-3232. [PMID: 32427198 PMCID: PMC7229441 DOI: 10.1007/s11696-020-01180-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 01/12/2023]
Abstract
Though it has not been shown to deliver any biological importance, mercuric(II) ion (Hg2+) is a deleterious cation which poses grievous effects to the human body and/or the ecosystem, hence, the need for its sensitive and selective monitoring in both environmental and biological systems. Over the years, there has been a great deal of work in the use of fluorescent, colourimetric, and/or ratiometric probes for Hg2+ recognition. Essentially, the purpose of this review article is to give an overview of the advances made in the constructions of such probes based on the works reported in the period from 2011 to 2019. Discussion in this review work has been tailored to the kinds of fluorophore scaffolds used for the constructions of the probes reported. Selected examples of probes under each fluorophore subcategory were discussed with mentions of the typically determined parameters in an analytical sensing operation, including modulation in fluorescence intensity, optimal pH, detection limit, and association constant. The environmental and biological application ends of the probes were also touched where necessary. Important generalisations and conclusions were given at the end of the review. This review article highlights 196 references.
Collapse
|
6
|
Parsaee Z. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system. ULTRASONICS SONOCHEMISTRY 2018; 44:24-35. [PMID: 29680608 DOI: 10.1016/j.ultsonch.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%.
Collapse
Affiliation(s)
- Zohreh Parsaee
- Young Researchers and Elite Club, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| |
Collapse
|
7
|
Saleem M, Rafiq M, Hanif M. Organic Material Based Fluorescent Sensor for Hg2+: A Brief Review on Recent Development. REVIEWS IN FLUORESCENCE 2016 2017. [DOI: 10.1007/978-3-319-48260-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Saleem M, Rafiq M, Hanif M. Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development. J Fluoresc 2016; 27:31-58. [DOI: 10.1007/s10895-016-1933-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
|
9
|
Malkondu S, Turhan D, Kocak A. Copper(II)-directed static excimer formation of an anthracene-based highly selective fluorescent receptor. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Wang P, Hu J, Yang S, Song B, Wang Q. Self-Assembly of Pyridinium-Tailored Anthracene Amphiphiles into Supramolecular Hydrogels. Chem Asian J 2014; 9:2880-4. [DOI: 10.1002/asia.201402590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/14/2014] [Indexed: 12/24/2022]
|
11
|
Huang CY, Jhong Y, Chir JL, Wu AT. A quinoline derivative as an efficient sensor to detect selectively Al³⁺ ion. J Fluoresc 2014; 24:991-4. [PMID: 24866153 DOI: 10.1007/s10895-014-1404-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
A quinoline-based Schiff base 1 has been utilized as a fluorescence chemosensor for the selective detection of Al(3+). The receptor 1 exhibited a high association constant (3.67 × 10(5) M(-1)) with submicromolar detection limit (0.18 ppm) towards Al(3+) in CH3CN solution.
Collapse
Affiliation(s)
- Cheng-Yin Huang
- Department of Chemistry, National Changhua University of Education, Changhua, 50058, Taiwan
| | | | | | | |
Collapse
|
12
|
Synthesis and characterization of 6,6″′-bis(anthracen-9-yl)-2,2′;6′,2″;6″,2″′-quaterpyridine. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jisha B, Resmi M, Maya R, Varma RL. Colorimetric detection of Al(III) ions based on triethylene glycol appended 8-propyloxy quinoline ester. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Bhardwaj VK, Sharma H, Kaur N, Singh N. Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg2+ in aqueous media. NEW J CHEM 2013. [DOI: 10.1039/c3nj01086d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|