1
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
2
|
Neofotistos SP, Tzouras NV, Pauze M, Gómez‐Bengoa E, Vougioukalakis GC. Manganese‐Catalyzed Multicomponent Synthesis of Tetrasubstituted Propargylamines: System Development and Theoretical Study. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stavros P. Neofotistos
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| | - Nikolaos V. Tzouras
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| | - Martin Pauze
- Department of Organic Chemistry I, Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
| | - Enrique Gómez‐Bengoa
- Department of Organic Chemistry I, Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
| | - Georgios C. Vougioukalakis
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| |
Collapse
|
3
|
Batsyts S, Hübner EG, Namyslo JC, Schmidt A. The Interconnection of Two Positive Charges by Conjugation and Cross‐Conjugation in Bis‐Quinolinium Ethynyls. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sviatoslav Batsyts
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 D‐38678 Clausthal‐Zellerfeld Germany
| | - Eike G. Hübner
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 D‐38678 Clausthal‐Zellerfeld Germany
| | - Jan C. Namyslo
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 D‐38678 Clausthal‐Zellerfeld Germany
| | - Andreas Schmidt
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 D‐38678 Clausthal‐Zellerfeld Germany
| |
Collapse
|
4
|
Tebikachew BE, Börjesson K, Kann N, Moth-Poulsen K. Release of Terminal Alkynes via Tandem Photodeprotection and Decarboxylation of o-Nitrobenzyl Arylpropiolates in a Flow Microchannel Reactor. Bioconjug Chem 2018; 29:1178-1185. [DOI: 10.1021/acs.bioconjchem.7b00812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Behabitu Ergette Tebikachew
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Nina Kann
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
5
|
Li X, Sun S, Yang F, Kang J, Wu Y, Wu Y. Palladium-catalyzed oxidative deacetonative coupling of 4-aryl-2-methyl-3-butyn-2-ols with H-phosphonates. Org Biomol Chem 2015; 13:2432-6. [DOI: 10.1039/c4ob02410a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new and generally practical synthesis of alkynylphosphonates through a palladium-catalyzed consecutive Sonogashira/deacetonative process using aryl bromides, 2-methyl-3-butyn-2-ol and H-phosphonates is developed.
Collapse
Affiliation(s)
- Xiang Li
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Suyan Sun
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Fan Yang
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jianxun Kang
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| |
Collapse
|