1
|
Cheng R, Nishikawa Y, Wagatsuma T, Kambe T, Tanaka YK, Ogra Y, Tamura T, Hamachi I. Protein-Labeling Reagents Selectively Activated by Copper(I). ACS Chem Biol 2024; 19:1222-1228. [PMID: 38747299 DOI: 10.1021/acschembio.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper is an essential trace element that participates in many biological processes through its unique redox cycling between cuprous (Cu+) and cupric (Cu2+) oxidation states. To elucidate the biological functions of copper, chemical biology tools that enable selective visualization and detection of copper ions and proteins in copper-rich environments are required. Herein, we describe the design of Cu+-responsive reagents based on a conditional protein labeling strategy. Upon binding Cu+, the probes generated quinone methide via oxidative bond cleavage, which allowed covalent labeling of surrounding proteins with high Cu+ selectivity. Using gel- and imaging-based analyses, the best-performing probe successfully detected changes in the concentration of labile Cu+ in living cells. Moreover, conditional proteomics analysis suggested intramitochondrial Cu+ accumulation in cells undergoing cuproptosis. Our results highlight the power of Cu+-responsive protein labeling in providing insights into the molecular mechanisms of Cu+ metabolism and homeostasis.
Collapse
Affiliation(s)
- Rong Cheng
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Gupta K, Datta A. An activity-based fluorescent sensor with a penta-coordinate N-donor binding site detects Cu ions in living systems. Chem Commun (Camb) 2023; 59:8282-8285. [PMID: 37318277 DOI: 10.1039/d3cc02201c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An activity-based sensor afforded a 63 times fluorescence-enhancement with Cu2+/Cu+ ions and could image Cu2+/Cu+ in living cells and in a multicellular organism. The sensor functioned only in the presence of ambient dioxygen and glutathione, and the characterization of intermediates and products hinted toward a sensing mechanism involving a CuII hydroperoxo species.
Collapse
Affiliation(s)
- Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| |
Collapse
|
3
|
Okuda K, Takashima I, Takagi A. Advances in reaction-based synthetic fluorescent probes for studying the role of zinc and copper ions in living systems. J Clin Biochem Nutr 2023; 72:1-12. [PMID: 36777081 PMCID: PMC9899921 DOI: 10.3164/jcbn.22-92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the behavior of essential trace metal elements in living organisms has attracted more and more attention as their dynamics have been found to be tightly regulated by metallothionines, transporters, etc. As the physiological and/or pathological roles of such metal elements are critical, there have been many non-invasive methods developed to determine their cellular functions, mainly by small molecule fluorescent probes. In this review, we focus on probes that detect intracellular zinc and monovalent copper. Both zinc and copper act not only as tightly bound cofactors of enzymes and proteins but also as signaling factors as labile or loosely bound species. Many fluorescent probes that detect mobile zinc or monovalent copper are recognition-based probes, whose detection is hindered by the abundance of intracellular chelators such as glutathione which interfere with the interaction between probe and metal. In contrast, reaction-based probes release fluorophores triggered by zinc or copper and avoid interference from such intracellular chelators, allowing the detection of even low concentrations of such metals. Here, we summarize the current status of the cumulative effort to develop such reaction-based probes and discuss the strategies adopted to overcome their shortcomings.
Collapse
Affiliation(s)
- Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan,To whom correspondence should be addressed. E-mail:
| | - Ippei Takashima
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Takagi
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama-kita, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
4
|
Jiang D, Zheng M, Yan X, Huang B, Huang H, Gong T, Liu K, Liu J. A "turn-on" ESIPT fluorescence probe of 2-(aminocarbonyl)phenylboronic acid for the selective detection of Cu(ii). RSC Adv 2022; 12:31186-31191. [PMID: 36349016 PMCID: PMC9620781 DOI: 10.1039/d2ra04348c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Herein, we report a highly selective fluorescent probe for the detection of Cu(ii). The detection mechanism relies on the Cu(ii)-catalyzed oxidative hydroxylation of 2-(aminocarbonyl)phenylboronic acid into salicylamide, thus recovering the excited-state intramolecular proton transfer (ESIPT) effect and inducing more than 35-fold fluorescence enhancement. The simple structure and readily available fluorescent probe give a novel method for quantitatively detecting Cu(ii) in the linear range of 0-22 μM, with a limit of detection down to 68 nM, and exhibiting high selectivity for Cu(ii) over 16 other metal ions.
Collapse
Affiliation(s)
- Dandan Jiang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Minghao Zheng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Xiaoyang Yan
- Jiaxing Hospital of TCM. ICUZhongshan East Road 1501Jiaxing 314001China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Hui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Tianhao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology86 Hongqi RoadGanzhou 341000P. R. China
| |
Collapse
|
5
|
Synthesis of Xylyl-Linked Bis-Benzimidazolium Salts and Their Application in the Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of Aryl Chlorides. Catalysts 2021. [DOI: 10.3390/catal11070817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A new series of xylyl-linked bis-benzimidazolium salts were efficiently prepared using a simple preparation method from bis-benzimidazolium precursors featuring highly tunable linkers and wingtips. A highly efficient Suzuki–Miyaura cross-coupling reaction of aryl chlorides within the range of 0.5–2.0 mol% Pd-catalyst loading was observed. Also, di-ortho-substituted biaryl synthesis was achieved.
Collapse
|
6
|
Thierer LM, Wang Q, Brooks SH, Cui P, Qi J, Gau MR, Manor BC, Carroll PJ, Tomson NC. Pyridyldiimine macrocyclic ligands: Influences of template ion, linker length and imine substitution on ligand synthesis, structure and redox properties. Polyhedron 2021; 198. [PMID: 33776186 DOI: 10.1016/j.poly.2021.115044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of 2,6-diiminopyridine-derived macrocyclic ligands have been synthesized via [2+2] condensation around alkaline earth metal triflate salts. The inclusion of a tert-butyl group at the 4-position of the pyridine ring of the macrocyclic synthons results in macrocyclic complexes that are soluble in common organic solvents, thereby enabling a systematic comparison of the physical properties of the complexes by NMR spectroscopy, mass spectrometry, solution-phase UV-Vis spectroscopy, cyclic voltammetry and single-crystal X-ray crystallography. Solid-state structures determined crystallographically demonstrate increased twisting in the ligand, concurrent with either a decrease in ion size or an increase in macrocycle ring size (18, 20, or 22 membered rings). The degree of folding and twisting within the macrocycle can be quantified using parameters derived from the Npyr-M-Npyr bond angle and the relative orientation of the pyridinediimine (PDI) and pyridinedialdimine (PDAI) fragments to each other within the solid state structures. Cyclic voltammetry and UV-Vis spectroscopy were used to compare the relative energies of the imine π* orbital of the redox active PDI and PDAI components in the macrocycle when coordinated to redox inactive metals. Both methods indicate the change from a methyl to hydrogen substitution on the imine carbon lowers the energy of the ligand π* system.
Collapse
Affiliation(s)
| | | | | | - Peng Cui
- University of Pennsylvania for this work
| | - Jia Qi
- University of Pennsylvania for this work
| | | | | | | | | |
Collapse
|
7
|
Nan X, Huyan Y, Li H, Sun S, Xu Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213580] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Bravin C, Badetti E, Licini G, Zonta C. Tris(2-pyridylmethyl)amines as emerging scaffold in supramolecular chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213558] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Chakraborty S, Ravindran V, Nidheesh PV, Rayalu S. Optical Sensing of Copper and Its Removal by Different Environmental Technologies. ChemistrySelect 2020. [DOI: 10.1002/slct.202002113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Vyshakh Ravindran
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| | - Sadhana Rayalu
- CSIR-National Environmental Engineering Research Institute Nagpur Maharashtra India
| |
Collapse
|
10
|
Qin H, Li L, Li K, Xiaoqi Y. Novel strategy of constructing fluorescent probe for MAO-B via cascade reaction and its application in imaging MAO-B in human astrocyte. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Saleem M, Rafiq M, Hanif M, Shaheen MA, Seo SY. A Brief Review on Fluorescent Copper Sensor Based on Conjugated Organic Dyes. J Fluoresc 2017; 28:97-165. [DOI: 10.1007/s10895-017-2178-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
|
12
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Hu Z, Hu J, Wang H, Zhang Q, Zhao M, Brommesson C, Tian Y, Gao H, Zhang X, Uvdal K. A TPA-caged precursor of (imino)coumarin for “turn-on” fluorogenic detection of Cu+. Anal Chim Acta 2016; 933:189-95. [DOI: 10.1016/j.aca.2016.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/14/2023]
|
14
|
Liu Q, Fei Q, Fei Y, Fan Q, Shan H, Feng G, Huan Y. A novel colorimetric probe derived from isonicotic acid hydrazide for copper (II) determination based on internal charge transfer (ICT). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:785-789. [PMID: 26172465 DOI: 10.1016/j.saa.2015.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/18/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
A novel isonicotic acid hydrazide Schiff base derivative N'-(3,5-di-tert-butyl-2-hydroxy-benzylidene) isonicotinohydrazide (DHIH) has been synthesized and developed as a high selective and sensitive colorimetric probe for Cu(2+) determination. Addition of Cu(2+) to the solution of DHIH resulted in a rapid color change from colorless to yellow together with an obvious new absorption band appeared at the range of 400-440 nm by forming a 1:1 complex. Experimental results indicated that the DHIH could provide absorption response to Cu(2+) with a linear dynamic range from 1.0×10(-5) to 1.0×10(-4)mol/L. The detection limit of Cu(2+) was 5.24×10(-7)mol/L with good tolerance of other metal ions.
Collapse
Affiliation(s)
- Qing Liu
- College of Chemistry, Jilin University, Changchun 130023, PR China
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun 130023, PR China
| | - Yanqun Fei
- Changchun Weiersai Biotec Pharmaceutical Co., Ltd., Changchun 130616, PR China
| | - Qian Fan
- Changchun Vocational Institute of Technology, Changchun 130033, PR China
| | - Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130023, PR China
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun 130023, PR China
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130023, PR China.
| |
Collapse
|
15
|
Li C, Xiang K, Liu Y, Zheng Y, Tian B, Zhang J. A novel colorimetric chemosensor for Cu2+ with high selectivity and sensitivity based on Rhodamine B. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2024-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Saleem M, Lee KH. Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 2015. [DOI: 10.1039/c5ra11388a] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review, we cover the recent developments in fluorogenic and chromogenic sensors for Cu2+, Fe2+/Fe3+, Zn2+and Hg2+.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| | - Ki Hwan Lee
- Department of Chemistry
- Kongju National University
- Gongju
- Republic of Korea
| |
Collapse
|
17
|
Pal S, Chatterjee N, Bharadwaj PK. Selectively sensing first-row transition metal ions through fluorescence enhancement. RSC Adv 2014. [DOI: 10.1039/c4ra02054e] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescence signaling systems that give enhancement in the presence of first-row transition metal ions are discussed.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Nabanita Chatterjee
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| | - Parimal K. Bharadwaj
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016, India
| |
Collapse
|