1
|
Watanabe S, Kato H, Yoshinaga K, Kohara A, Ukawa Y, Matsuyama A, Furuya T. Comparative analysis of substrate- and regio-selectivity of HpaB monooxygenases and their application to hydroxydaidzein synthesis. J Biotechnol 2025; 397:61-66. [PMID: 39577670 DOI: 10.1016/j.jbiotec.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (HpaB) has high potential for use in polyphenol synthesis via ortho-hydroxylation. Although the HpaB enzymes from Pseudomonas aeruginosa (PaHpaB) and Escherichia coli (EcHpaB) have been well studied, few studies have compared their activity and substrate selectivity. Thus, which HpaB is optimal for use in the biotechnological production of polyphenols is unclear. In this study, we performed a comparative analysis of the substrate- and regio-selectivity of PaHpaB, EcHpaB, and the recently discovered enzyme from Rhodococcus opacus (RoHpaB). The activity of these enzymes was first compared toward representative aromatic substrates. PaHpaB and EcHpaB exhibited very similar catalytic activity toward p-coumaric acid and tyrosol with one benzene ring, whereas PaHpaB exhibited greater activity than EcHpaB toward resveratrol and naringenin with two benzene rings. These results suggest that PaHpaB is superior to EcHpaB in converting bulky compounds. Furthermore, PaHpaB also exhibited catalytic activity toward a flavonoid, daidzein (7,4'-dihydroxyisoflavone), whereas EcHpaB did not. RoHpaB also exhibited strong activity toward daidzein in addition to other aromatic substrates. Interestingly, PaHpaB hydroxylated the 6-position of daidzein, whereas RoHpaB hydroxylated the 3'-position. PaHpaB and RoHpaB enabled the facile synthesis of not only 6-hydroxydaidzein and 3'-hydroxydaidzein but also 6,3'-dihydroxydaidzein via the cascade reaction. This study is the first to demonstrate synthesis of hydroxydaidzeins using HpaB enzymes.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Kato
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kento Yoshinaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akiko Kohara
- Daicel Corporation, 2-18-1 Konan, Minato-ku, Tokyo 108-8230, Japan
| | - Yuichi Ukawa
- Daicel Corporation, 2-18-1 Konan, Minato-ku, Tokyo 108-8230, Japan
| | | | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
2
|
Sun P, Xu S, Tian Y, Chen P, Wu D, Zheng P. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile O-Hydroxylation Applications in the Biosynthesis of Phenolic Derivatives. Int J Mol Sci 2024; 25:1222. [PMID: 38279222 PMCID: PMC10816480 DOI: 10.3390/ijms25021222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H) is a long-known class of two-component flavin-dependent monooxygenases from bacteria, including an oxygenase component (EC 1.14.14.9) and a reductase component (EC 1.5.1.36), with the latter being accountable for delivering the cofactor (reduced flavin) essential for o-hydroxylation. 4HPA3H has a broad substrate spectrum involved in key biological processes, including cellular catabolism, detoxification, and the biosynthesis of bioactive molecules. Additionally, it specifically hydroxylates the o-position of the C4 position of the benzene ring in phenolic compounds, generating high-value polyhydroxyphenols. As a non-P450 o-hydroxylase, 4HPA3H offers a viable alternative for the de novo synthesis of valuable natural products. The enzyme holds the potential to replace plant-derived P450s in the o-hydroxylation of plant polyphenols, addressing the current significant challenge in engineering specific microbial strains with P450s. This review summarizes the source distribution, structural properties, and mechanism of 4HPA3Hs and their application in the biosynthesis of natural products in recent years. The potential industrial applications and prospects of 4HPA3H biocatalysts are also presented.
Collapse
Affiliation(s)
| | | | | | | | | | - Pu Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (P.S.); (Y.T.); (P.C.); (D.W.)
| |
Collapse
|
3
|
Yang K, Zhang Q, Zhao W, Hu S, Lv C, Huang J, Mei J, Mei L. Advances in 4-Hydroxyphenylacetate-3-hydroxylase Monooxygenase. Molecules 2023; 28:6699. [PMID: 37764475 PMCID: PMC10537072 DOI: 10.3390/molecules28186699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Catechols have important applications in the pharmaceutical, food, cosmetic, and functional material industries. 4-hydroxyphenylacetate-3-hydroxylase (4HPA3H), a two-component enzyme system comprising HpaB (monooxygenase) and HpaC (FAD oxidoreductase), demonstrates significant potential for catechol production because it can be easily expressed, is highly active, and exhibits ortho-hydroxylation activity toward a broad spectrum of phenol substrates. HpaB determines the ortho-hydroxylation efficiency and substrate spectrum of the enzyme; therefore, studying its structure-activity relationship, improving its properties, and developing a robust HpaB-conducting system are of significance and value; indeed, considerable efforts have been made in these areas in recent decades. Here, we review the classification, molecular structure, catalytic mechanism, primary efforts in protein engineering, and industrial applications of HpaB in catechol synthesis. Current trends in the further investigation of HpaB are also discussed.
Collapse
Affiliation(s)
- Kai Yang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Qianchao Zhang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Changjiang Lv
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co., Ltd., Hangzhou 310011, China
| | - Lehe Mei
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|
4
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Tonegawa S, Ishii K, Kaneko H, Habe H, Furuya T. Discovery of diphenyl ether-degrading Streptomyces strains by direct screening based on ether bond-cleaving activity. J Biosci Bioeng 2023; 135:474-479. [PMID: 36973095 DOI: 10.1016/j.jbiosc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Diphenyl ethers (DEs), which are widely used in the agricultural and chemical industries, have become hazardous contaminants in the environment. Although several DE-degrading bacteria have been reported, discovering new types of such microorganisms could enhance understanding of the degradation mechanism in the environment. In this study, we used a direct screening method based on detection of ether bond-cleaving activity to screen for microorganisms that degrade 4,4'-dihydroxydiphenyl ether (DHDE) as a model DE. Microorganisms isolated from soil samples were incubated with DHDE, and strains producing hydroquinone via ether bond cleavage were selected using hydroquinone-sensitive Rhodanine reagent. This screening procedure resulted in the isolation of 3 bacteria and 2 fungi that transform DHDE. Interestingly, all of the isolated bacteria belonged to one genus, Streptomyces. To our knowledge, these are the first microorganisms of the genus Streptomyces shown to degrade a DE. Streptomyces sp. TUS-ST3 exhibited high and stable DHDE-degrading activity. HPLC, LC-MS, and GC-MS analyses revealed that strain TUS-ST3 converts DHDE to its hydroxylated analogue and generates hydroquinone as an ether bond-cleavage product. Strain TUS-ST3 also transformed DEs other than DHDE. In addition, glucose-grown TUS-ST3 cells began to transform DHDE after incubation with this compound for 12 h, and produced 75 μM hydroquinone in 72 h. These activities of streptomycetes may play an important role in DE degradation in the environment. We also report the whole genome sequence of strain TUS-ST3.
Collapse
Affiliation(s)
- Satoshi Tonegawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kanako Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Kaneko
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
6
|
Nozawa D, Matsuyama A, Furuya T. Biocatalytic synthesis and evaluation of antioxidant and antibacterial activities of hydroxyequols. Bioorg Med Chem Lett 2022; 73:128908. [PMID: 35902062 DOI: 10.1016/j.bmcl.2022.128908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Hydroxyequols are promising analogues of the biologically active flavonoid, equol. We recently found that the flavin-dependent monooxygenase HpaBro-3 of Rhodococcus opacus regioselectively synthesizes 3'-hydroxyequol from equol, whereas HpaBpl-1 of Photorhabdus luminescens synthesizes 6-hydroxyequol. In this study, we investigated the cascade synthesis of a dihydroxyequol compound from equol using these two enzymes. When Escherichia coli cells expressing HpaBro-3 and cells expressing HpaBpl-1 were simultaneously incubated with equol, the cells efficiently synthesized 6,3'-dihydroxyequol (8.7 mM, 2.4 g/L) via 3'- and 6-hydroxyequols in one pot. The antioxidant activity of the equol derivatives increased with an increase in the number of hydroxyl groups on the equol scaffold. 6,3'-Dihydroxyequol exhibited potent antioxidant activity. In addition, 6-hydroxyequol significantly inhibited the growth of E. coli. Cell survival studies suggested that 6-hydroxyequol is a bactericidal rather than bacteriostatic compound. To our knowledge, this is the first report describing the antibacterial activity of hydroxyequols.
Collapse
Affiliation(s)
- Daiki Nozawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | - Toshiki Furuya
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
7
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
8
|
Song H, Lee PG, Kim J, Kim J, Lee SH, Kim H, Lee UJ, Kim JY, Kim EJ, Kim BG. Regioselective One-Pot Synthesis of Hydroxy-( S)-Equols Using Isoflavonoid Reductases and Monooxygenases and Evaluation of the Hydroxyequol Derivatives as Selective Estrogen Receptor Modulators and Antioxidants. Front Bioeng Biotechnol 2022; 10:830712. [PMID: 35402392 PMCID: PMC8987157 DOI: 10.3389/fbioe.2022.830712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Several regiospecific enantiomers of hydroxy-(S)-equol (HE) were enzymatically synthesized from daidzein and genistein using consecutive reduction (four daidzein-to-equol-converting reductases) and oxidation (4-hydroxyphenylacetate 3-monooxygenase, HpaBC). Despite the natural occurrence of several HEs, most of them had not been studied owing to the lack of their preparation methods. Herein, the one-pot synthesis pathway of 6-hydroxyequol (6HE) was developed using HpaBC (EcHpaB) from Escherichia coli and (S)-equol-producing E. coli, previously developed by our group. Based on docking analysis of the substrate or products, a potential active site and several key residues for substrate binding were predicted to interpret the (S)-equol hydroxylation regioselectivity of EcHpaB. Through investigating mutations on the key residues, the T292A variant was verified to display specific mono-ortho-hydroxylation activity at C6 without further 3'-hydroxylation. In the consecutive oxidoreductive bioconversion using T292A, 0.95 mM 6HE could be synthesized from 1 mM daidzein, while 5HE and 3'HE were also prepared from genistein and 3'-hydroxydaidzein (3'HD or 3'-ODI), respectively. In the following efficacy tests, 3'HE and 6HE showed about 30∼200-fold higher EC50 than (S)-equol in both ERα and ERβ, and they did not have significant SERM efficacy except 6HE showing 10% lower β/α ratio response than that of 17β-estradiol. In DPPH radical scavenging assay, 3'HE showed the highest antioxidative activity among the examined isoflavone derivatives: more than 40% higher than the well-known 3'HD. In conclusion, we demonstrated that HEs could be produced efficiently and regioselectively through the one-pot bioconversion platform and evaluated estrogenic and antioxidative activities of each HE regio-isomer for the first time.
Collapse
Affiliation(s)
- Hanbit Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Institute of Engineering Research, Seoul National University, Seoul, South Korea
| | - Junyeob Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sang-Hyuk Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Bio-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Ishida A, Furuya T. Diversity and characteristics of culturable endophytic bacteria from Passiflora edulis seeds. Microbiologyopen 2021; 10:e1226. [PMID: 34459555 PMCID: PMC8364935 DOI: 10.1002/mbo3.1226] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023] Open
Abstract
Defense compounds generally inhibit microbial colonization of plants. In this study, we examined the presence of endophytes in Passiflora edulis seeds that accumulate resveratrol and piceatannol at extremely high levels as defense compounds. Interestingly, although no microbial colonies appeared on an agar growth medium from the cut or homogenized seeds, colonies were generated from cut seedlings derived from the seeds. A total of 19 bacterial strains were isolated, of which 15 were classified as Gram-positive. As we hypothesized that extremely high levels of piceatannol in the seeds would inhibit the growth of endophytes cultured directly from the seeds, we examined the antimicrobial activity of this compound against the isolated bacteria. Piceatannol exerted bacteriostatic rather than bactericidal effects on most of the bacteria tested. These results suggest that the bacteria remain static in the seeds due to the presence of piceatannol and are transmitted to the seedlings during the germination process, enabling colonies to be established from the seedlings on the agar medium. We also investigated the biocatalytic activity of the isolated bacteria toward resveratrol and piceatannol. One bacterium, Brevibacterium sp. PE28-2, converted resveratrol and piceatannol to their respective derivatives. This strain is the first endophyte shown to exhibit such activity.
Collapse
Affiliation(s)
- Aoi Ishida
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChibaJapan
| | - Toshiki Furuya
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChibaJapan
| |
Collapse
|
10
|
Furuya T, Imaki N, Shigei K, Sai M, Kino K. Isolation and characterization of Gram-negative and Gram-positive bacteria capable of producing piceatannol from resveratrol. Appl Microbiol Biotechnol 2019; 103:5811-5820. [PMID: 31093702 DOI: 10.1007/s00253-019-09875-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Piceatannol is a valuable natural polyphenol with therapeutic potential in cardiovascular and metabolic disease treatment. In this study, we screened for microorganisms capable of producing piceatannol from resveratrol via regioselective hydroxylation. In the first screening, we isolated microorganisms utilizing resveratrol, phenol, or 4-hydroxyphenylacetic acid as a carbon source for growth. In the second screening, we assayed the isolated microorganisms for hydroxylation of resveratrol. Using this screening procedure, a variety of resveratrol-converting microorganisms were obtained. One Gram-negative bacterium, Ensifer sp. KSH1, and one Gram-positive bacterium, Arthrobacter sp. KSH3, utilized 4-hydroxyphenylacetic acid as a carbon source for growth and efficiently hydroxylated resveratrol to piceatannol without producing any detectable by-products. The hydroxylation activity of strains KSH1 and KSH3 was strongly induced by cultivation with 4-hydroxyphenylacetic acid as a carbon source during stationary growth phase. Using the 4-hydroxyphenylacetic acid-induced cells as a biocatalyst under optimal conditions, production of piceatannol by strains KSH1 and KSH3 reached 3.6 mM (0.88 g/L) and 2.6 mM (0.64 g/L), respectively. We also cloned genes homologous to the monooxygenase gene hpaBC from strains KSH1 and KSH3. Introduction of either hpaBC homolog into Escherichia coli endowed the host with resveratrol-hydroxylating activity.
Collapse
Affiliation(s)
- Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Naoto Imaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Shigei
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiko Sai
- Health Science Research Center, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama, 230-8504, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
11
|
Afzali M, Mostafavi A, Shamspur T. Decoration of graphene oxide with NiO@polypyrrole core-shell nanoparticles for the sensitive and selective electrochemical determination of piceatannol in grape skin and urine samples. Talanta 2019; 196:92-99. [DOI: 10.1016/j.talanta.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
|
12
|
Li X, Shen X, Wang J, Ri HI, Mi CY, Yan Y, Sun X, Yuan Q. Efficient biosynthesis of 3, 4-dihydroxyphenylacetic acid in Escherichia coli. J Biotechnol 2019; 294:14-18. [DOI: 10.1016/j.jbiotec.2019.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/15/2023]
|
13
|
Biosynthesis of resveratrol and piceatannol in engineered microbial strains: achievements and perspectives. Appl Microbiol Biotechnol 2019; 103:2959-2972. [DOI: 10.1007/s00253-019-09672-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
|
14
|
Hashimoto T, Nozawa D, Mukai K, Matsuyama A, Kuramochi K, Furuya T. Monooxygenase-catalyzed regioselective hydroxylation for the synthesis of hydroxyequols. RSC Adv 2019; 9:21826-21830. [PMID: 35518870 PMCID: PMC9066559 DOI: 10.1039/c9ra03913a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
A one-step product-selective approach for synthesizing hydroxyequols from equol using oxidation biocatalysts was developed.
Collapse
Affiliation(s)
- Takafumi Hashimoto
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | - Daiki Nozawa
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | | | | | - Kouji Kuramochi
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| | - Toshiki Furuya
- Department of Applied Biological Science
- Faculty of Science and Technology
- Tokyo University of Science
- Noda
- Japan
| |
Collapse
|
15
|
Shrestha A, Pandey RP, Pokhrel AR, Dhakal D, Chu LL, Sohng JK. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Appl Microbiol Biotechnol 2018; 102:9691-9706. [PMID: 30178203 DOI: 10.1007/s00253-018-9323-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/04/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol and its ortho-hydroxylated derivative piceatannol were biosynthesized by modular pathway engineering in Escherichia coli. The biosynthetic pathway was divided into three different modules. Module I includes polyketide biosynthetic genes; module II genes include acetyl-CoA and malonyl-CoA pool-enhancing genes from three different organisms; and module III genes are regiospecific 3'-hydroxylating enzymes. E. coli BL21(DE3) with module I produced 8.6 mg/L of resveratrol from exogenously fed 1 mM p-coumaric acid after 72 h. Combination of module I and acetyl-CoA supplementing module IIb genes from N. farcinica IFM10152 produced 2.5-fold higher (60 mg/L) titer of resveratrol than the module IIa genes from E. coli. The exogenous supplementation of sodium acetate further enhanced production to 64 mg/L. Furthermore, module I with module IIc harboring matBC from S. coelicolor A3(2) produced 73 mg/L of resveratrol, which was elevated to 151 mg/L upon supplementing disodium malonate exogenously. This increment is 17.5-fold higher than module I harboring E. coli BL21(DE3). The combination of module I and two different module II genes yielded 137 mg/L resveratrol when supplemented with both sodium acetate and disodium malonate. The high resveratrol-producing combination module was further modified with incorporation of hpaBC for the ortho-hydroxylation of resveratrol to produce piceatannol. The engineered strain harboring modules I, IIc and III produced 124 mg/L of piceatannol, the highest titer after 72 h in disodium malonate-supplemented strain, which is 2-fold higher than in non-supplemented strain. The remaining resveratrol was about 30 mg/L. Furthermore, caffeic acid (85.5 mg/L) was also produced in the same strain. Resveratrol and piceatannol were biosynthesized along with caffeic acid by three different modules overexpressing acetate and malonate assimilation pathway genes from three different sources. The production titer of both resveratrol and piceatannol could be achieved higher upon blocking acetyl-CoA and malonyl-CoA utilizing pathway genes in host strain.
Collapse
Affiliation(s)
- Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Luong Luan Chu
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. .,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.
| |
Collapse
|
16
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
17
|
Cheng H, Zou Y, Luo X, Song XH, Yang Z. Enzymatic synthesis of catechol-functionalized polyphenols with excellent selectivity and productivity. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Efficient monooxygenase-catalyzed piceatannol production: Application of cyclodextrins for reducing product inhibition. J Biosci Bioeng 2018; 126:478-481. [PMID: 29764766 DOI: 10.1016/j.jbiosc.2018.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/28/2022]
Abstract
Piceatannol is a rare, costly plant-based stilbene derivative and exhibits various health-enhancing properties. Recently, we demonstrated that piceatannol could be produced from resveratrol through site-selective hydroxylation using Escherichia coli cells expressing the monooxygenase HpaBC. However, piceatannol production ceased at approximately 25 mM, even when sufficient levels of the substrate resveratrol remained in the reaction mixture. In this study, we found that high concentrations (>20-25 mM) of piceatannol significantly inhibited the HpaBC-catalyzed reaction. Cyclodextrins (CDs) reportedly encapsulate various hydrophobic compounds. We found that the addition of β-CD or γ-CD to the reaction mixture reduced the inhibition caused by the product piceatannol. The effects of β-CD on piceatannol production were more pronounced than those of γ-CD at high concentrations of the substrate resveratrol and CDs. The production of piceatannol reached 49 mM (12 g L-1) in the presence of β-CD, a level twice that achieved in the absence of β-CD. The technique described here might be applicable to the bioproduction of other stilbenes and structurally related compounds.
Collapse
|
19
|
Xia W, Rui W, Zhao W, Sheng S, Lei L, Feng Y, Zhao S. Stable isotope labeling and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside biosynthetic pathway characterization in Fallopia multiflora. PLANTA 2018; 247:613-623. [PMID: 29138972 DOI: 10.1007/s00425-017-2797-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
The THSG biosynthetic pathway in F. multiflora was characterized, and enzymatic activities responsible for the resveratrol synthesis, hydroxylation, and glycosylation reactions involved in THSG biosynthesis were confirmed in vitro. The biosynthetic origin of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (THSG) and the enzymes involved in THSG biosynthesis in Fallopia multiflora were studied using stable isotope labeling and biocatalytic methods. UPLC-MS-based analyses were used to unravel the isotopologue composition of the biosynthetic intermediates and products, as well as to detect the products of the enzyme assay experiments. In this study, 13C-labeled L-phenylalanine (L-PHE), sodium pyruvate (SP), and sodium bicarbonate (SB) were used as putative precursors in the feeding experiment. Labeling of polydatin (PD) and THSG using [13C9]L-PHE and [13C1]L-PHE confirmed that the p-coumaric moiety of PD and THSG was derived from PHE. The results of the feeding experiments with [13C] SB and [2, 3-13C2] SP suggested that PD and THSG were derivatives of resveratrol that were synthesized by glycosylation and hydroxylation. We developed methods using total crude protein extracts (soluble and microsomal) for comprehensive and simultaneous analysis of resveratrol synthase, glycosyltransferase, and hydroxylase activities in various tissue types of wild F. multiflora and callus cultures. The activity of each tested enzyme was confirmed in one or more tissue types or cell cultures in vitro. The results of the enzyme activity experiments and the distributions of PD and THSG were used to determine the main site and pathway of THSG biosynthesis in F. multiflora.
Collapse
Affiliation(s)
- Wanxia Xia
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Wen Rui
- Centre Laboratory, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wei Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shujing Sheng
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Lei Lei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yifan Feng
- Centre Laboratory, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Shujin Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Department of Pharmacy, General Hospital of Guangzhou Military Command, No. 111, Liuhua Road, Yuexiu District, Guangzhou, 510010, People's Republic of China.
| |
Collapse
|
20
|
Bregman-Cohen A, Deri B, Maimon S, Pazy Y, Fishman A. Altering 2-Hydroxybiphenyl 3-Monooxygenase Regioselectivity by Protein Engineering for the Production of a New Antioxidant. Chembiochem 2018; 19:583-590. [DOI: 10.1002/cbic.201700648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Almog Bregman-Cohen
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Batel Deri
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Shiran Maimon
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Yael Pazy
- Technion Center for Structural Biology; Lorry I. Lokey Center for Life Sciences and Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering; Technion-Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
21
|
Heo KT, Kang SY, Jang JH, Hong YS. Sam5, a Coumarate 3-Hydroxylase fromSaccharothrix espanaensis: New Insight into the Piceatannol Production as a Resveratrol 3’-Hydroxylase. ChemistrySelect 2017. [DOI: 10.1002/slct.201701969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); 30 Yeongudanji-ro, Ochang-eup Chungbuk 28116 Korea
- Department of Biomolecular Science, KRIBB School of Bioscience; Korea University of Science and Technology (UST); Daejeon 34141 Korea
| | - Sun-Young Kang
- Chemical Biology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); 30 Yeongudanji-ro, Ochang-eup Chungbuk 28116 Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); 30 Yeongudanji-ro, Ochang-eup Chungbuk 28116 Korea
- Department of Biomolecular Science, KRIBB School of Bioscience; Korea University of Science and Technology (UST); Daejeon 34141 Korea
| | - Young-Soo Hong
- Chemical Biology Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); 30 Yeongudanji-ro, Ochang-eup Chungbuk 28116 Korea
- Department of Biomolecular Science, KRIBB School of Bioscience; Korea University of Science and Technology (UST); Daejeon 34141 Korea
| |
Collapse
|
22
|
Yamashita Y, Biard A, Hanaya K, Shoji M, Sugai T. Short-step syntheses of naturally occurring polyoxygenated aromatics based on site-selective transformation. Biosci Biotechnol Biochem 2017; 81:1279-1284. [PMID: 28345416 DOI: 10.1080/09168451.2017.1303362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wogonin and astringin were synthesized from inexpensive chrysin and piceid in short steps. The key feature of these syntheses is site-selective transformation. The target molecules were obtained in 27 and 62% yields from the starting materials, respectively.
Collapse
Affiliation(s)
- Yasunobu Yamashita
- a Department of Pharmaceutical Sciences, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Alan Biard
- a Department of Pharmaceutical Sciences, Faculty of Pharmacy , Keio University , Tokyo , Japan.,b Department of Chemistry , Graduate School of SIGMA Clermont , Aubiere Cedex , France
| | - Kengo Hanaya
- a Department of Pharmaceutical Sciences, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Mitsuru Shoji
- a Department of Pharmaceutical Sciences, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Takeshi Sugai
- a Department of Pharmaceutical Sciences, Faculty of Pharmacy , Keio University , Tokyo , Japan
| |
Collapse
|
23
|
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q. Synthesis of chemicals by metabolic engineering of microbes. Chem Soc Rev 2016; 44:3760-85. [PMID: 25940754 DOI: 10.1039/c5cs00159e] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic engineering is a powerful tool for the sustainable production of chemicals. Over the years, the exploration of microbial, animal and plant metabolism has generated a wealth of valuable genetic information. The prudent application of this knowledge on cellular metabolism and biochemistry has enabled the construction of novel metabolic pathways that do not exist in nature or enhance existing ones. The hand in hand development of computational technology, protein science and genetic manipulation tools has formed the basis of powerful emerging technologies that make the production of green chemicals and fuels a reality. Microbial production of chemicals is more feasible compared to plant and animal systems, due to simpler genetic make-up and amenable growth rates. Here, we summarize the recent progress in the synthesis of biofuels, value added chemicals, pharmaceuticals and nutraceuticals via metabolic engineering of microbes.
Collapse
Affiliation(s)
- Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15#, Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Furuya T, Sai M, Kino K. Biocatalytic synthesis of 3,4,5,3′,5′-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC. Biosci Biotechnol Biochem 2016; 80:193-8. [DOI: 10.1080/09168451.2015.1072463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
HpaBC monooxygenase was previously reported to hydroxylate resveratrol to piceatannol. In this article, we report a novel catalytic activity of HpaBC for the synthesis of a pentahydroxylated stilbene. When Escherichia coli cells expressing HpaBC were incubated with resveratrol, the resulting piceatannol was further converted to a new product. This product was identified by mass spectrometry and NMR spectroscopy as a 5-hydroxylated piceatannol, 3,4,5,3′,5′-pentahydroxy-trans-stilbene (PHS), which is a reportedly valuable biologically active stilbene derivative. We attempted to produce PHS from piceatannol on a flask scale. After examining the effects of detergents and buffers on PHS production, E. coli cells expressing HpaBC efficiently hydroxylated piceatannol to PHS in a reaction mixture containing 1.5% (v/v) Tween 80 and 100 mM 3-morpholinopropanesulfonic acid-NaOH buffer at pH 7.5. Under the optimized conditions, the whole cells regioselectively hydroxylated piceatannol, and the production of PHS reached 6.9 mM (1.8 g L−1) in 48 h.
Collapse
Affiliation(s)
- Toshiki Furuya
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| | - Masahiko Sai
- Health Science Research Center, Morinaga and Company Limited, Yokohama, Japan
| | - Kuniki Kino
- Faculty of Science and Engineering, Department of Applied Chemistry, Waseda University, Tokyo, Japan
| |
Collapse
|
25
|
Roh C, Kang C. Production of anti-cancer agent using microbial biotransformation. Molecules 2014; 19:16684-92. [PMID: 25325153 PMCID: PMC6270657 DOI: 10.3390/molecules191016684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022] Open
Abstract
Microbial biotransformation is a great model system to produce drugs and biologically active compounds. In this study, we elucidated the fermentation and production of an anti-cancer agent from a microbial process for regiospecific hydroxylation of resveratrol. Among the strains examined, a potent strain showed high regiospecific hydroxylation activity to produce piceatannol. In a 5 L (w/v 3 L) jar fermentation, this wild type Streptomyces sp. in the batch system produced 205 mg of piceatannol (i.e., 60% yields) from 342 mg of resveratrol in 20 h. Using the product, an in vitro anti-cancer study was performed against a human cancer cell line (HeLa). It showed that the biotransformed piceatannol possessed a significant anticancer activity. This result demonstrates that a biotransformation screening method might be of therapeutic interest with respect to the identification of anti-cancer drugs.
Collapse
Affiliation(s)
- Changhyun Roh
- Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Korea.
| | - ChanKyu Kang
- Ministry of Environment, Daegu Regional Environmental Office, Government Complex, Hwaam-ro, Dalseo-Gu, Daegu 704-841, Korea.
| |
Collapse
|
26
|
|