1
|
Hu HC, Yu SY, Tsai YH, Hsieh PW, Wang HC, Chen YN, Chuang YT, Lee MY, Chang HW, Hu HC, Wu YC, Chang FR, Szatmári I, Fülöp F. Synthesis of bioactive evodiamine and rutaecarpine analogues under ball milling conditions. Org Biomol Chem 2024; 22:2620-2629. [PMID: 38451121 DOI: 10.1039/d4ob00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 μg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.
Collapse
Affiliation(s)
- Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Yin Yu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Pharmacognosy, University of Szeged, Szeged 6720, Hungary
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907101, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yan-Ning Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Min-Yu Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Chun Hu
- Department of Otorhinolaryngology-Head and Neck Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - István Szatmári
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and HUN-REN-Stereochemistry Research Group, University of Szeged, Szeged 6720, Hungary.
| |
Collapse
|
2
|
Baek SC, Kim B, Jang H, Kim K, Park IS, Min DH, Kim VN. Structural atlas of human primary microRNAs generated by SHAPE-MaP. Mol Cell 2024; 84:1158-1172.e6. [PMID: 38447581 DOI: 10.1016/j.molcel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
MicroRNA (miRNA) maturation is critically dependent on structural features of primary transcripts (pri-miRNAs). However, the scarcity of determined pri-miRNA structures has limited our understanding of miRNA maturation. Here, we employed selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), a high-throughput RNA structure probing method, to unravel the secondary structures of 476 high-confidence human pri-miRNAs. Our SHAPE-based structures diverge substantially from those inferred solely from computation, particularly in the apical loop and basal segments, underlining the need for experimental data in RNA structure prediction. By comparing the structures with high-throughput processing data, we determined the optimal structural features of pri-miRNAs. The sequence determinants are influenced substantially by their structural contexts. Moreover, we identified an element termed the bulged GWG motif (bGWG) with a 3' bulge in the lower stem, which promotes processing. Our structure-function mapping better annotates the determinants of pri-miRNA processing and offers practical implications for designing small hairpin RNAs and predicting the impacts of miRNA mutations.
Collapse
Affiliation(s)
- S Chan Baek
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Boseon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Harim Jang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea
| | - Il-Soo Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Dal-Hee Min
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; School of Biological Science, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
3
|
Wen X, Zhang M, Duan Z, Suo Y, Lu W, Jin R, Mu B, Li K, Zhang X, Meng L, Hong Y, Wang X, Hu H, Zhu J, Song W, Shen A, Lu X. Discovery, SAR Study of GST Inhibitors from a Novel Quinazolin-4(1 H)-one Focused DNA-Encoded Library. J Med Chem 2023; 66:11118-11132. [PMID: 37552553 DOI: 10.1021/acs.jmedchem.2c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The DNA-encoded library (DEL) is a powerful hit-generation tool in drug discovery. This study describes a new DEL with a privileged scaffold quinazolin-4(3H)-one developed by a robust DNA-compatible multicomponent reaction and a series of novel glutathione S-transferase (GST) inhibitors that were identified through affinity-mediated DEL selection. A novel inhibitor 16 was subsequently verified with an inhibitory potency value of 1.55 ± 0.02 μM against SjGST and 2.02 ± 0.20 μM against hGSTM2. Further optimization was carried out via various structure-activity relationship studies. And especially, the co-crystal structure of the compound 16 with the SjGST was unveiled, which clearly demonstrated its binding mode was quite different from the known GSH-like compounds. This new type of probe is likely to play a different role compared with the GSH, which may provide new opportunities to discover more potent GST inhibitors.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Minmin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Kaige Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Xu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Linghua Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yu Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingyu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hangchen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
| | - Jian Zhu
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Weixiao Song
- Protein Crystallography Platform, WuXi AppTec (Suzhou) Co., Ltd., 1318 Wuzhong Avenue, Wuzhong District, Suzhou 215104, China
| | - Aijun Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
Chen X, Jin L, Wang Y, Yang H, Le Z, Xie Z. Synthesis of fused quinazolinones via visible light induced cyclization of 2-aminobenzaldehydes with tetrahydroisoquinolines. Org Biomol Chem 2023; 21:3863-3870. [PMID: 37093566 DOI: 10.1039/d3ob00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. Moreover, using 2-aminophenone as the substrate and under similar reaction conditions, the same product was obtained when a carbon was removed. The bio-active naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The success of the reaction on the gram-scale and the further transformation of the substrate demonstrated the synthetic practicability of this reaction.
Collapse
Affiliation(s)
- Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yihong Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Hong Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
5
|
Saikia RA, Talukdar K, Pathak D, Sarma B, Thakur AJ. Utilization of Aryl(TMP)iodonium Salts for Copper-Catalyzed N-Arylation of Isatoic Anhydrides: An Avenue to Fenamic Acid Derivatives and N,N'-Diarylindazol-3-ones. J Org Chem 2023; 88:3567-3581. [PMID: 36827541 DOI: 10.1021/acs.joc.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Herein, we report a general method for copper-catalyzed N-arylation of isatoic anhydrides with unsymmetrical iodonium salts at room temperature. The developed catalytic protocol is mild and operationally simple, and aryl(TMP)iodonium trifluoroacetate is employed as the arylating partner. The methodology offers the broad applicability of both structurally and electronically diverse aryl groups from aryl(TMP)iodonium salts to access N-arylated isatoic anhydrides in moderate to excellent yields (53-92%). Moreover, the substituted isatoic anhydrides are equally compatible with the protocol too. To demonstrate the synthetic utilities of the N-arylation process, we also report an alternative approach for biologically relevant fenamic acid derivatives and N,N'-diarylindazol-3-ones in a one-pot step economical system. In addition, the scale-up synthesis of flufenamic acid is also illustrated.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Khanindra Talukdar
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Debabrat Pathak
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| |
Collapse
|
6
|
Wang M, Ye W, Sun N, Yu W, Chang J. Synthesis of Quinazolinone-Fused Tetrahydroisoquinolines and Related Polycyclic Scaffolds by Iodine-Mediated sp 3 C-H Amination. J Org Chem 2023; 88:1061-1074. [PMID: 36630199 DOI: 10.1021/acs.joc.2c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An iodine-mediated intramolecular sp3 C-H amination reaction producing quinazolinone-fused polycyclic skeletons from 2-aminobenzamide precursors is reported. This reaction does not use transition metals, has a broad substrate scope, and can be used on a gram scale. Under the optimal reaction conditions, a variety of quinazolinone-fused tetrahydroisoquinolines and derivatives of Rutaecarpine were synthesized from readily accessible compounds. The reaction proceeds well with crude 2-aminobenzamide derivatives, allowing for the synthesis of the products from simple 2-aminobenzoic acids and tetrahydroisoquinolines without purification of the 2-aminobenzamide intermediates. Preliminary biological experiments have identified Cereblon (CRBN) inhibitory activity and relevant anti-myeloma medicinal properties in some of these polycyclic products.
Collapse
Affiliation(s)
- Manman Wang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Ye
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Sun
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Fan M, Yao L. The Synthesis, Structural Modification and Mode of Anticancer Action of Evodiamine: a review. Recent Pat Anticancer Drug Discov 2021; 17:284-296. [PMID: 34939550 DOI: 10.2174/1574892817666211221165739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Finding novel antitumor reagents from naturally occurring alkaloids is a widely accepted strategy. Evodiamine, a tryptamine indole alkaloid isolated from Evodia rutaecarpa, has a wide range of biological activities, such as antitumor, anti-inflammation, and anti-bacteria. Hence, research works on the structural modification of evodiamine will facilitate the discovery of new antitumor drugs. OBJECTIVE The recent advances in the synthesis of evodiamine, and studies on the drug design, biological activities, and structure-activity-relationships of its derivatives, published in patents and primary literatures, are reviewed in this paper. METHODS The literatures, including patents and follow-up research papers from 2015 to 2020, related to evodiamine is searched in the Scifinder, PubMed, Espacenet, China National Knowledge Infrastructure (CNKI), and Wanfang databases. The key words are evodiamine, synthesis, modification, anticancer, mechanism. RESULTS The synthesis of evodiamine are summarized. Then, structural modifications of evodiamine are described, and the possible modes of actions are discussed. CONCLUSION Evodiamine has a 6/5/6/6/6 ring system, and the structural modifications are focused on ring A, D, E, C5, N-13, and N-14. Some compounds show promising anticancer potentials and warrant further study.
Collapse
Affiliation(s)
- Meixia Fan
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| | - Lei Yao
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong. China
| |
Collapse
|
8
|
Ma J, Yang R, Guo H, Zhang K, Liu J, Feng Y, Zhou J, Jin R, Li Z, Guo D, Yan YG, Zhu H, Tang Y. Synthesis, Antitumor Activity, Oil-Water Partition Coefficient, and Theoretical Calculation of 2 New Rutaecarpine Derivatives With Methoxy Groups. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21991686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two rutaecarpine (RUT) derivatives, substituted with methoxy groups, namely, 2-methoxyl rutaecarpine (RUT-OCH3, 3a), and 2,10-dimethoxy rutaecarpine (RUT-(OCH3)2, 3b), were synthesized and characterized using 1H nuclear magnetic resonance (NMR), 13C NMR and mass spectra. The in vitro antitumor activities of compounds RUT, 3a, and 3b against A549, H1299, and HepG2 cells were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The results showed that the activity of compounds 3a and 3b was stronger than that of compound RUT, and the activity of compound 3a was stronger than that of 3b, indicating that the activity of the compounds was improved after structural modification. The apparent oil-water partition coefficients of compound RUT, 3a, and 3b were explored using ultraviolet spectrometry. The results indicated that hydrophobicity affects the physicochemical properties of the molecules and influences antitumor activities. In addition, the Natural Electron Configuration, frontier molecular orbital (highest occupied molecular orbital, lowest unoccupied molecular orbital) bandgaps of compounds have been studied based on density functional theory (DFT) by means of DFT-B3LYP/6‐31G (d) in Gaussian 16. The calculation results showed that bandgap of 3a is highest, indicating that the stability of 3a is weakest, so 3a has higher activity than RUT and 3b, which agrees with the results of antitumor activities experiment.
Collapse
Affiliation(s)
- Jingjing Ma
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruolan Yang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Hui Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Keyao Zhang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Jingli Liu
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yifan Feng
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Jing Zhou
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Zhi Li
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Dongyan Guo
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Yong-gang Yan
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| | - Haiyan Zhu
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontier, Northwest University, Xi’an, Shaanxi, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi, China
| |
Collapse
|
9
|
Wang ZH, Wang H, Wang H, Li L, Zhou MD. Ruthenium(II)-Catalyzed C–C/C–N Coupling of 2-Arylquinazolinones with Vinylene Carbonate: Access to Fused Quinazolinones. Org Lett 2021; 23:995-999. [DOI: 10.1021/acs.orglett.0c04200] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhao-Hui Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Hua Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Lei Li
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001, P. R. China
| |
Collapse
|
10
|
Wang D, Xiao F, Zhang F, Huang H, Deng G. Copper‐Catalyzed
Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to
Isoquinolino‐Fused
Quinazolinones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
- School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
11
|
Zhou X, Ding Y, Huang H. Palladium‐Catalyzed Carbonylative Difunctionalization of C=N Bond of Azaarenes or Imines to Quinazolinones. Chem Asian J 2020; 15:1678-1682. [DOI: 10.1002/asia.202000359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/01/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xibing Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yongzheng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
12
|
Nie LF, Wang SS, Cao JG, Liu FZ, Xiamuxi H, Aisa HA, Huang GZ. Straightforward synthesis, characterization, and cytotoxicity evaluation of hybrids of natural alkaloid evodiamine/rutaecarpine and thieno[2,3- d]pyrimidinones. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:69-82. [PMID: 30588834 DOI: 10.1080/10286020.2018.1540599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Dozens of hybrids of natural alkaloid evodiamine/rutaecarpine and thieno[2,3-d]pyrimidinones were synthesized in a straightforward method by condensation of substituted 2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-diones or N-methyl-2H-thieno[2,3-d][1, 3]oxazine-2,4(1H)-dione with 3,4-dihydro-β-carbolines. In vitro cytotoxic assay discovered that compounds 9a, 10e, 11a, 11d, 11f, and 12a could induce antiproliferation against four different types of human cancer cells while compounds 10f and 12e were inactive. Notably, compound 11a displayed potent cell cytotoxicity for human non-small cell lung cancer cells A549, PC-9, human prostate cancer cells PC-3, and human breast cancer cell line MCF-7. Furthermore, compound 11a exhibited strong colony formation inhibition to A549 cells. These results unfold potential anticancer therapeutic applications of hybrids of thieno[2,3-d]pyrimidinones and quinazolinones.
Collapse
Affiliation(s)
- Li-Fei Nie
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Si Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Jian-Guo Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Fei-Ze Liu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hainimu Xiamuxi
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Guo-Zheng Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| |
Collapse
|
13
|
Jia FC, Chen TZ, Hu XQ. TFA/TBHP-promoted oxidative cyclisation for the construction of tetracyclic quinazolinones and rutaecarpine. Org Chem Front 2020. [DOI: 10.1039/d0qo00345j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient TFA/TBHP-promoted oxidative cyclisation of readily available isatins with 1,2,3,4-tetrahydroisoquinolines has been firstly developed. The potential utility of this strategy was demonstrated by one-step synthesis of a natural alkaloid Rutaecarpin.
Collapse
Affiliation(s)
- Feng-Cheng Jia
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Tian-Zhi Chen
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
14
|
Zhang S, Liu F, Hou X, Cao J, Dai X, Yu J, Huang G. Synthesis of Novel Analogs of Thieno[2,3- d] Pyrimidin-4(3 H)-ones as Selective Inhibitors of Cancer Cell Growth. Biomolecules 2019; 9:E631. [PMID: 31640194 PMCID: PMC6843832 DOI: 10.3390/biom9100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022] Open
Abstract
New 2,3-disubstituted thieno[2,3-d]pyrimidin-4(3H)-ones were synthesized via a one-pot reaction from 2H-thieno[2,3-d] [1,3]oxazine-2,4(1H)-diones, aromatic aldehydes, and benzylamine or 4-hydroxylbezylamine. The obtained compounds were tested in vitro for cancer cell growth inhibition. Compound 19 can inhibit all four types of tested cancer cells, i.e., MCF-7, A549, PC-9, and PC-3 cells. Most of the compounds inhibited the proliferation of A549 and MCF-7 cells. Compound 15 exhibited the strongest anti-proliferative effect against A549 cell lines with IC50 values of 0.94 μM, and with no toxicity to normal human liver cells. Its potency was further proved by cell clone formation assay, Hoechst 33258 staining, and evaluation on the effects of apoptosis-related proteins.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Feize Liu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xueling Hou
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Xiling Dai
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Junjie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
| | - Guozheng Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 201418, China.
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
15
|
Sadeghzadeh SM, Zhiani R. Synthesis of pyridopyrimidinones by N-heterocyclic carbene palladium(II) supported on KCC-1 in aqueous solution. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Huang G, Drakopoulos A, Saedtler M, Zou H, Meinel L, Heilmann J, Decker M. Cytotoxic properties of the alkaloid rutaecarpine and its oligocyclic derivatives and chemical modifications to enhance water-solubility. Bioorg Med Chem Lett 2017; 27:4937-4941. [DOI: 10.1016/j.bmcl.2017.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
|
17
|
Zhang WZ, Zhang N, Sun YQ, Ding YW, Lu XB. Palladium-Catalyzed Cyclization Reaction of o-Iodoanilines, CO2, and CO: Access to Isatoic Anhydrides. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Zhen Zhang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ning Zhang
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu-Qian Sun
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu-Wei Ding
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
18
|
Alsharif Z, Ali MA, Alkhattabi H, Jones D, Delancey E, Ravikumar PC, Alam MA. Hexafluoroisopropanol mediated benign synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones by using a domino protocol. NEW J CHEM 2017; 41:14862-14870. [PMID: 29430169 DOI: 10.1039/c7nj03376a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Domino strategy has been used for the synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones. Four sequential reactions: aza-Michael addition, water elimination, intramolecular acyl substitution, and [1,3]-H shift were observed in this domino protocol. Hexafluoroisopropanol is used as a promotor and recyclable solvent in this cascade process. Availability of inexpensive 2-aminopyridines and wide variety of Michael acceptors such as commercially available acrylates and unactivated Baylis-Hillman adducts makes this methodology a huge reservoir of novel fused N-heterocycles as bioactive and potential therapeutic agents. The reaction mechanism has been proposed and rationalized by density functional theory calculation. Products are obtained up to 95% yield.
Collapse
Affiliation(s)
- Zakeyah Alsharif
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467
| | - Mohamad Akbar Ali
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Hessa Alkhattabi
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467
| | - Derika Jones
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467
| | - Evan Delancey
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467
| | - P C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER)† Bhubaneswar, Jatni Campus, Dt: Khurda, Odisha 752050, India
| | - Mohammad A Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467
| |
Collapse
|
19
|
Wen LR, Dou Q, Wang YC, Zhang JW, Guo WS, Li M. Synthesis of 1-Thio-Substituted Isoquinoline Derivatives by Tandem Cyclization of Isothiocyanates. J Org Chem 2017; 82:1428-1436. [DOI: 10.1021/acs.joc.6b02605] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li-Rong Wen
- State
Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry
and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, P. R. China
| | - Qian Dou
- State
Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry
and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuan-Chao Wang
- State
Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry
and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jin-Wei Zhang
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, P. R. China
| | - Wei-Si Guo
- State
Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry
and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, P. R. China
| | - Ming Li
- State
Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry
and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
20
|
Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones. Sci Rep 2016; 6:36316. [PMID: 27805054 PMCID: PMC5090868 DOI: 10.1038/srep36316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
An efficient synthesis of novel 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones has been reported. Inexpensive and readily available substrates, environmentally benign reaction condition, and product formation up to quantitative yield are the key features of this methodology. Products are formed by the aza-Michael addition followed by intramolecular acyl substitution in a domino process. The polar nature and strong hydrogen bond donor capability of 1,1,1,3,3,3-hexafluoropropan-2-ol is pivotal in this cascade protocol.
Collapse
|
21
|
Kim H, Park G, Park J, Chang S. A Facile Access to Primary Alkylamines and Anilines via Ir(III)-Catalyzed C–H Amidation Using Azidoformates. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01869] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Gyeongtae Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Juhyeon Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
22
|
Asadollahi K, Rafiee S, Riazi G. Sensitive detection of proteins in polyacrylamide gel via isatoic anhydride derivatization: Introduction of a low-cost fluorescent prelabeling procedure. Electrophoresis 2016; 37:2610-2614. [PMID: 27440545 DOI: 10.1002/elps.201600237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 11/08/2022]
Abstract
Here, we introduce isatoic anhydride as a sensitive and commodious fluorescent prelabel for detection of proteins in one-dimensional polyacrylamide gels. High reactivity of isatoic anhydride with nucleophiles in mild alkaline environments makes it an appropriate tag for labeling of biomolecules. In this study, we show that preelectrophoresis labeling of proteins with isatoic anhydride for few minutes at room temperature allows detection of 2-4 ng of standard proteins, BSA and lysozyme, per band. Proteins were successfully labeled in the presence of a wide range of common biological reagents and in crude cell extract. The labeled proteins have the same electrophoretic migration in comparison to unlabeled proteins; however the application of saturation labeling method results in slight band broadening. Compatibility of the method with downstream processes was assessed by tryptic digestion of labeled proteins and study of peptide mixture using gel electrophoresis which revealed partial digestion of labeled proteins due to lysine modification. The present procedure is sensitive, rapid, and inexpensive and is a promising alternative for current protein staining procedures, where downstream processes are not desired.
Collapse
Affiliation(s)
- Kazem Asadollahi
- Neuro-organic Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Saharnaz Rafiee
- Neuro-organic Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholamhossein Riazi
- Neuro-organic Laboratory, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
23
|
Yamashita M, Nishizono Y, Himekawa S, Iida A. One-pot synthesis of polyhydropyrido[1,2- a ]indoles and tetracyclic quinazolinones from 2-arylindoles using copper-mediated oxidative tandem reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Abbas SY, El-Bayouki KAM, Basyouni WM. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1177087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Samir Y. Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Khairy A. M. El-Bayouki
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wahid M. Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
25
|
Investigation into the stability and reactivity of the pentacyclic alkaloid dehydroevodiamine and the benz-analog thereof. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Yang Y, Zhu C, Zhang M, Huang S, Lin J, Pan X, Su W. Condensation of anthranilic acids with pyridines to furnish pyridoquinazolones via pyridine dearomatization. Chem Commun (Camb) 2016; 52:12869-12872. [DOI: 10.1039/c6cc07365d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unprecedented carbodiimide-mediated condensation between pyridines and anthranilic acids at room temperature has been developed for pyridoquinazolones.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
| | - Cuiju Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Shijun Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jingjing Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines
- and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
| | - Weiping Su
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
27
|
Godeau J, Harari M, Laclef S, Deau E, Fruit C, Besson T. Cu/Pd-Catalyzed C-2-H Arylation of Quinazolin-4(3H)-ones with (Hetero)aryl Halides. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Progress in Studies on Rutaecarpine. II.--Synthesis and Structure-Biological Activity Relationships. Molecules 2015; 20:10800-21. [PMID: 26111170 PMCID: PMC6272352 DOI: 10.3390/molecules200610800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/24/2022] Open
Abstract
Rutaecarpine is a pentacyclic indolopyridoquinazolinone alkaloid found in Evodia rutaecarpa and other related herbs. It has a variety of intriguing biological properties, which continue to attract the academic and industrial interest. Studies on rutaecarpine have included isolation from new natural sources, development of new synthetic methods for its total synthesis, the discovery of new biological activities, metabolism, toxicology, and establishment of analytical methods for determining rutaecarpine content. The present review focuses on the synthesis, biological activities, and structure-activity relationships of rutaecarpine derivatives, with respect to their antiplatelet, vasodilatory, cytotoxic, and anticholinesterase activities.
Collapse
|
29
|
Liang LN, An R, Huang T, Xu M, Hao XJ, Pan WD, Liu S. A simple approach for the syntheses of rutaecarpine and its analogs. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Laclef S, Harari M, Godeau J, Schmitz-Afonso I, Bischoff L, Hoarau C, Levacher V, Fruit C, Besson T. Ligand-free Pd-catalyzed and copper-assisted C-H arylation of quinazolin-4-ones with aryl iodides under microwave heating. Org Lett 2015; 17:1700-3. [PMID: 25781369 DOI: 10.1021/acs.orglett.5b00467] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A microwave-assisted method for the palladium-catalyzed direct arylation of quinazolin-4-one has been developed under copper-assistance. This method is applicable to a wide range of aryl iodides and substituted (2H)-quinazolin-4-ones. This protocol provides a simple and efficient way to synthesize biologically relevant 2-arylquinazolin-4-one backbones.
Collapse
Affiliation(s)
- Sylvain Laclef
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Marine Harari
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Julien Godeau
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Laurent Bischoff
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Christophe Hoarau
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Vincent Levacher
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Corinne Fruit
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Thierry Besson
- Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
31
|
Subba Reddy BV, Anji Babu R, Jagan Mohan Reddy B, Sridhar B, Ramalinga Murthy T, Pranathi P, Kalivendi SV, Prabhakar Rao T. A short and highly convergent approach for the synthesis of rutaecarpine derivatives. RSC Adv 2015. [DOI: 10.1039/c4ra14093a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of rutaecarpine analogues is accomplished from anthranilamide and chloroaldehyde through the halocyclization strategy.
Collapse
Affiliation(s)
- B. V. Subba Reddy
- Natural Product Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - R. Anji Babu
- Natural Product Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Department of Organic Chemistry
| | | | - B. Sridhar
- Laboratory of X-ray Crystallography
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - T. Ramalinga Murthy
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - P. Pranathi
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Shasi V. Kalivendi
- Centre for Chemical Biology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - T. Prabhakar Rao
- Centre for Nuclear Magnetic Resonance
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| |
Collapse
|
32
|
Khan I, Ibrar A, Ahmed W, Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur J Med Chem 2014; 90:124-69. [PMID: 25461317 DOI: 10.1016/j.ejmech.2014.10.084] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/10/2014] [Accepted: 10/31/2014] [Indexed: 12/18/2022]
Abstract
The presence of N-heterocycles as an essential structural motif in a variety of biologically active substances has stimulated the development of new strategies and technologies for their synthesis. Among the various N-heterocyclic scaffolds, quinazolines and quinazolinones form a privileged class of compounds with their diverse spectrum of therapeutic potential. The easy generation of complex molecular diversity through broadly applicable, cost-effective, practical and sustainable synthetic methods in a straightforward fashion along with the importance of these motifs in medicinal chemistry, received significant attention from researchers engaged in drug design and heterocyclic methodology development. In this perspective, the current review article is an effort to recapitulate recent developments in the eco-friendly and green procedures for the construction of highly challenging and potentially bioactive quinazoline and quinazolinone compounds in order to help medicinal chemists in designing and synthesizing novel and potent compounds for the treatment of different disorders. The key mechanistic insights for the synthesis of these heterocycles along with potential applications and manipulations of the products have also been conferred. This article also aims to highlight the promising future directions for the easy access to these frameworks in addition to the identification of more potent and specific products for numerous biological targets.
Collapse
Affiliation(s)
- Imtiaz Khan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aliya Ibrar
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Waqas Ahmed
- Office of Research, Innovation and Commercialization, University of Gujrat, Gujrat 50700, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|