1
|
Dhakal B, Mandhapati A, Eradi P, Park S, Fibben K, Li K, DeYong A, Escopy S, Karki G, Park DD, Haller CA, Dai E, Sun L, Lam WA, Chaikof EL. Total Synthesis of a PSGL-1 Glycopeptide Analogue for Targeted Inhibition of P-Selectin. J Am Chem Soc 2024; 146:17414-17427. [PMID: 38865166 DOI: 10.1021/jacs.4c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The high affinity interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin is mediated by a multimotif glycosulfopeptide (GSP) recognition domain consisting of clustered tyrosine sulfates and a Core 2 O-glycan terminated with sialyl LewisX (C2-O-sLeX). These distinct GSP motifs are much more common than previously appreciated within a wide variety of functionally important domains involved in protein-protein interactions. However, despite the potential of GSPs to serve as tools for fundamental studies and prospects for drug discovery, their utility has been limited by the absence of chemical schemes for synthesis on scale. Herein, we report the total synthesis of GSnP-6, an analogue of the N-terminal domain of PSGL-1, and potent inhibitor of P-selectin. An efficient, scalable, hydrogenolysis-free synthesis of C2-O-sLeX-Thr-COOH was identified by both convergent and orthogonal one-pot assembly, which afforded this crucial building block, ready for direct use in solid phase peptide synthesis (SPPS). C2-O-sLeX-Thr-COOH was synthesized in 10 steps with an overall yield of 23% from the 4-O,5-N oxazolidinone thiosialoside donor. This synthesis represents an 80-fold improvement in reaction yield as compared to prior reports, achieving the first gram scale synthesis of SPPS ready C2-O-sLeX-Thr-COOH and enabling the scalable synthesis of GSnP-6 for preclinical evaluation. Significantly, we established that GSnP-6 displays dose-dependent inhibition of venous thrombosis in vivo and inhibits vaso-occlusive events in a human sickle cell disease equivalent microvasculature-on-a-chip system. The insights gained in formulating this design strategy can be broadly applied to the synthesis of a wide variety of biologically important oligosaccharides and O-glycan bearing glycopeptides.
Collapse
Affiliation(s)
- Bibek Dhakal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Appi Mandhapati
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Pradheep Eradi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Simon Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Kirby Fibben
- Departments of Pediatrics and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kaicheng Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ashley DeYong
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Samira Escopy
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Geeta Karki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Lijun Sun
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Wilbur A Lam
- Departments of Pediatrics and Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Harvey MR, Chiodo F, Noest W, Hokke CH, van der Marel GA, Codée JD. Synthesis and Antibody Binding Studies of Schistosome-Derived Oligo-α-(1-2)-l-Fucosides. Molecules 2021; 26:2246. [PMID: 33924587 PMCID: PMC8068878 DOI: 10.3390/molecules26082246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
Schistosomiasis is caused by blood-dwelling parasitic trematodes of the genus Schistosoma and is classified by the WHO as the second most socioeconomically devastating parasitic disease, second only to malaria. Schistosoma expresses a complex array of glycans as part of glycoproteins and glycolipids that can be targeted by both the adaptive and the innate part of the immune system. Some of these glycans can be used for diagnostic purposes. A subgroup of schistosome glycans is decorated with unique α-(1-2)-fucosides and it has been shown that these often multi-fucosylated fragments are prime targets for antibodies generated during infection. Since these α-(1-2)-fucosides cannot be obtained in sufficient purity from biological sources, we set out to develop an effective route of synthesis towards α-(1-2)-oligofucosides of varying length. Here we describe the exploration of two different approaches, starting from either end of the fucose chains. The oligosaccharides have been attached to gold nanoparticles and used in an enzyme-linked immunosorbent assay ELISA and a microarray format to probe antibody binding. We show that binding to the oligofucosides of antibodies in sera of infected people depends on the length of the oligofucose chains, with the largest glycans showing most binding.
Collapse
Affiliation(s)
- Michael R. Harvey
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; (M.R.H.); (F.C.); (W.N.); (G.A.v.d.M.)
| | - Fabrizio Chiodo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; (M.R.H.); (F.C.); (W.N.); (G.A.v.d.M.)
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands;
| | - Wouter Noest
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; (M.R.H.); (F.C.); (W.N.); (G.A.v.d.M.)
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands;
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; (M.R.H.); (F.C.); (W.N.); (G.A.v.d.M.)
| | - Jeroen D.C. Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands; (M.R.H.); (F.C.); (W.N.); (G.A.v.d.M.)
| |
Collapse
|
4
|
Das A, Li PJ, Adak AK, Wu HR, Anwar MT, Chiang PY, Sun CM, Hwu JR, Lin CC. Stereoselective synthesis of a 9- O-sulfo Neu5Gc-capped O-linked oligosaccharide found on the sea urchin egg receptor. Org Chem Front 2019. [DOI: 10.1039/c8qo00996a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first total synthesis of a serine bearing α2→5-Oglycolyl-linked oligoNeu5Gc found on sea urchin egg cell surfaces has been accomplished.
Collapse
Affiliation(s)
- Anindya Das
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Pei-Jhen Li
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Avijit K. Adak
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Hsin-Ru Wu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | | | - Pei-Yun Chiang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu-30013
- Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry
- National Tsing Hua University
- Hsinchu-30013
- Taiwan
| |
Collapse
|
5
|
Nagornaya MO, Orlova AV, Stepanova EV, Zinin AI, Laptinskaya TV, Kononov LO. The use of the novel glycosyl acceptor and supramer analysis in the synthesis of sialyl-α(2-3)-galactose building block. Carbohydr Res 2018; 470:27-35. [PMID: 30343245 DOI: 10.1016/j.carres.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
A new glycosyl acceptor to be used in sialylation was designed as a 3-hydroxy derivative of 4-methoxyphenyl β-d-galactopyranoside with 2-O-acetyl group and O-4 and O-6 protected as benzylidene acetal. Two alternative syntheses of this compound were compared. Sialylation of 3-OH group of the glycosyl acceptor with O-chloroacetylated N-trifluoroacetylneuraminic acid phenyl thioglycoside (NIS, TfOH, MeCN, MS 3 Å, -40 °C) was studied in a wide concentration range (5-150 mmol L-1). The outcome of sialylation generally followed the predictions of supramer analysis of solutions of sialyl donor in MeCN, which was performed by polarimetry and static light scattering and revealed two concentration ranges differing in solution structure and the structures of supramers of glycosyl donor. The optimized conditions of sialylation (C = 50 mmol L-1) were used to synthesize protected Neu-α(2-3)-Gal disaccharide (78%, α:β = 13:1), which was then converted to sialyl-α(2-3)-galactose imidate building block useful for the synthesis of complex sialo-oligosaccharides.
Collapse
Affiliation(s)
- Marina O Nagornaya
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation; N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Elena V Stepanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation; Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Tatiana V Laptinskaya
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 119992, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
6
|
Tatina MB, Khong DT, Judeh ZMA. Efficient Synthesis of α-Glycosyl Chlorides Using 2-Chloro-1,3-dimethylimidazolinium Chloride: A Convenient Protocol for Quick One-Pot Glycosylation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Madhu Babu Tatina
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Duc Thinh Khong
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive, N1.2-B1-14 637459 Singapore Singapore
| |
Collapse
|
7
|
Sardar MYR, Mandhapati AR, Park S, Wever WJ, Cummings RD, Chaikof EL. Convergent Synthesis of Sialyl Lewis X- O-Core-1 Threonine. J Org Chem 2018; 83:4963-4972. [PMID: 29638128 PMCID: PMC7648531 DOI: 10.1021/acs.joc.7b03117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selectins are a class of cell adhesion molecules that play a critical role during the initial steps of inflammation. The N-terminal domain of P-selectin glycoprotein ligand-1 (PSGL-1) binds to all selectins, but with the highest affinity to P-selectin. Recent evidence suggests that the blockade of P-selectin/PSGL-1 interactions provides a viable therapeutic option for the treatment of many inflammatory diseases. Herein, we report the total synthesis of threonine bearing sialyl LewisX (sLeX) linked to a Core-1- O-hexasaccharide 1, as a key glycan of the N-terminal domain of PSGL-1. A convergent synthesis using α-selective sialylation and a regioselective [4+2] glycosylation are the key features of this synthesis.
Collapse
Affiliation(s)
- Mohammed Y. R. Sardar
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Appi Reddy Mandhapati
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Simon Park
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Walter J. Wever
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
| | - Richard D. Cummings
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| | - Elliot L. Chaikof
- Department of Surgery, Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 110 Francis Street, Suite 9F, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Podvalnyy NM, Malysheva NN, Panova MV, Zinin AI, Chizhov AO, Orlova AV, Kononov LO. Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved? Carbohydr Res 2017; 451:12-28. [PMID: 28934626 DOI: 10.1016/j.carres.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
A series of novel sialyl donors containing O-trifluoroacetyl (TFA) groups at various positions was synthesized. The choice of protecting groups in sialyl donors was based on hypothesis that variations in ability of different acyl groups to act as hydrogen bond acceptors would influence the supramolecular structure of reaction mixture (solution structure), hence the outcome of sialylation. These glycosyl donors were examined in the model glycosylation of the primary hydroxyl group of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose in comparison with sialyl donors without O-TFA groups. The presence of O-TFA groups in a sialyl donor strongly affected the outcome of sialylation. Several sialyl donors studied showed promising results: yields of disaccharides can be as high as 86% as can be the stereoselectivities (α/β up to 15:1). The results obtained suggest that varying acyl O-protecting groups in sialyl donor may result in dramatic changes in the outcome of sialylation although further studies are required to dissect the influence of intermolecular hydrogen bonding and intramolecular substituent effects related to variations of electron-withdrawing properties of different acyl groups.
Collapse
Affiliation(s)
- Nikita M Podvalnyy
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Anna V Orlova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
9
|
Silvestri AP, Dawson PE. Base-catalyzed diastereoselective trimerization of trifluoroacetone. Org Biomol Chem 2017; 15:5131-5134. [PMID: 28594047 PMCID: PMC5584686 DOI: 10.1039/c7ob01094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic fluorocarbons have unique properties that facilitate their self assembly and adhesion to both inorganic and biological substrates. Incorporation of these moieties into valuable constructs typically require complex synthetic routes that have limited their use. Here, the base-catalyzed diastereoselective synthesis of 6-methyl-2,4,6-tris(trifluoromethyl)tetrahydro-2H-pyran-2,4-diol is reported. Trimerization of trifluoroacetone in the presence of 5 mol% KHMDS delivers one of four diastereomers selectively in 81% yield with no column chromatography. Temperature screening revealed the reversibility of this trimerization and the funneling of material into the most thermodynamically stable oxane. Subsequent functionalization with boronic acids is reported.
Collapse
Affiliation(s)
- Anthony P Silvestri
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
10
|
Pelletier G, Zwicker A, Allen CL, Schepartz A, Miller SJ. Aqueous Glycosylation of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion and Trimethylamine. J Am Chem Soc 2016; 138:3175-82. [PMID: 26859619 PMCID: PMC4817112 DOI: 10.1021/jacs.5b13384] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report a synthetic glycosylation reaction between sucrosyl acceptors and glycosyl fluoride donors to yield the derived trisaccharides. This reaction proceeds at room temperature in an aqueous solvent mixture. Calcium salts and a tertiary amine base promote the reaction with high site-selectivity for either the 3'-position or 1'-position of the fructofuranoside unit. Because nonenzymatic aqueous oligosaccharide syntheses are underdeveloped, mechanistic studies were carried out in order to identify the origin of the selectivity, which we hypothesized was related to the structure of the hydroxyl group array in sucrose. The solution conformation of various monodeoxysucrose analogs revealed the co-operative nature of the hydroxyl groups in mediating both this aqueous glycosyl bond-forming reaction and the site-selectivity at the same time.
Collapse
Affiliation(s)
- Guillaume Pelletier
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Aaron Zwicker
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - C. Liana Allen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107
| |
Collapse
|
11
|
Komarova BS, Tsvetkov YE, Nifantiev NE. Design of α-Selective Glycopyranosyl Donors Relying on Remote Anchimeric Assistance. CHEM REC 2016; 16:488-506. [PMID: 26785933 DOI: 10.1002/tcr.201500245] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/08/2022]
Abstract
Oligosaccharides have a variety of versatile biological effects, but unlike peptides and oligonucleotides, investigation of the roles of oligosaccharides is not easy. Since biosynthesis of oligosaccharides does not comply with direct genetic control, their isolation from natural sources and biotechnological preparation are complicated, due to the heterogeneous composition of raw carbohydrates. Oligosaccharide synthesis is needed for the establishment or confirmation of the structure of natural glycocompounds. Also, synthetically prepared, defined oligosaccharides and their derivatives are becoming increasingly important tools for many biological and immunological research projects. The key step of oligosaccharide synthesis involves glycosylation, a reaction that builds glycosidic bonds. Usually, construction of 1,2-trans-bonds is easy, and therefore, this reaction can even be included into automated syntheses. At this time, installation of the 1,2-cis-bond remains simultaneously frustrating and compelling. In our and other laboratories, a strategy of α-selective (1,2-cis) glycosylation, relying on remote anchimeric assistance with acyl groups, is studied. The state of the art in this work is summarized in this review.
Collapse
Affiliation(s)
- Bozhena S Komarova
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect 47, 119991, Moscow, Russia
| |
Collapse
|
12
|
|