1
|
Liang H, Berwanger MR, Morken JP. Stereospecific Phosphination and Thioetherification of Organoboronic Esters. J Am Chem Soc 2024; 146:18873-18878. [PMID: 38954635 DOI: 10.1021/jacs.4c06526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Alkyllithium-activated organoboronic esters are found to undergo stereospecific phosphination with copper chloride and chlorophosphines. They also react with thiolsulfonate electrophiles under copper catalysis. These reactions enable stereospecific phosphination and thiolation of organoboronic esters, which are further applied in preparation of chiral ligands and biologically active molecules.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Michael R Berwanger
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Wang B, Shen C, Dong K. Ligand-Controlled Regiodivergent Alkoxycarbonylation of Trifluoromethylthiolated Internal Alkynes. Org Lett 2024; 26:3628-3633. [PMID: 38652586 DOI: 10.1021/acs.orglett.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Controlling the regioselectivity for the alkoxycarbonylation of unsymmetric internal alkynes is challenging. Herein, a palladium-catalyzed ligand-controlled regiodivergent alkoxycarbonylation of internal trifluoromethylthiolated alkynes was achieved. A series of α- or β-SCF3 acrylates from the same trifluoromethylthiolated alkyne were obtained with moderate to high yield and regioselectivity.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Yang Y, Ma J, Zhang J, Cai H, Xu W. Umpolung trifluoromethylthiolation of alcohols. Org Biomol Chem 2023; 21:8663-8666. [PMID: 37881895 DOI: 10.1039/d3ob01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein we develop a metal-free umpolung dehydroxytrifluoromethylthiolation of alcohols with commercially available PPh3 and N-trifluoromethylthiophthalimide within 30 minutes. This protocol shows excellent functional group tolerance and high regioselectivity. The dehydroxytrifluoromethylthiolation of a series of natural products and drugs further demonstrates its practicality. Preliminary mechanistic studies suggest that PPh3 is responsible for deoxygenation and the key trifluoromethylthiophosphonium ion may be hydrolyzed by H2O in solvent.
Collapse
Affiliation(s)
- Ye Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiemin Ma
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiaxiang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Wentao Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
4
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
5
|
Monsigny L, Doche F, Besset T. Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein J Org Chem 2023; 19:448-473. [PMID: 37123090 PMCID: PMC10130906 DOI: 10.3762/bjoc.19.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Collapse
Affiliation(s)
- Louis Monsigny
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Floriane Doche
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
6
|
Uppalabat T, Hassa N, Sawektreeratana N, Leowanawat P, Janthakit P, Nalaoh P, Promarak V, Soorukram D, Reutrakul V, Kuhakarn C. Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. J Org Chem 2023; 88:5403-5419. [PMID: 37019432 DOI: 10.1021/acs.joc.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Thikhamporn Uppalabat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Cai Z, Zhang W, Yan Z, Du X. Synthesis of Novel α-Trifluorothioanisole Derivatives Containing Phenylpyridine Moieties with Herbicidal Activity. Molecules 2022; 27:molecules27185879. [PMID: 36144624 PMCID: PMC9505602 DOI: 10.3390/molecules27185879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
To discover novel herbicidal compounds with favorable activity, a range of phenylpyridine-moiety-containing α-trifluorothioanisole derivatives were designed, synthesized, and identified via NMR and HRMS. Preliminary screening of greenhouse-based herbicidal activity revealed that compound 5a exhibited >85% inhibitory activity against broadleaf weeds Amaranthus retroflexus, Abutilon theophrasti, and Eclipta prostrate at 37.5 g a.i./hm2, which was slightly superior to that of fomesafen. The current study suggests that compound 5a could be further optimized as an herbicide candidate to control various broadleaf weeds.
Collapse
Affiliation(s)
- Zengfei Cai
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenliang Zhang
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongjie Yan
- Agrowin (Ningbo) Bioscience Co., Ltd., Ningbo 315100, China
| | - Xiaohua Du
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
8
|
Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Gold (I/III)-Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides. Angew Chem Int Ed Engl 2022; 61:e202115687. [PMID: 35061930 PMCID: PMC10854012 DOI: 10.1002/anie.202115687] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/17/2023]
Abstract
The first C-SCF3 /SeCF3 cross-coupling reactions using gold redox catalysis [(MeDalphos)AuCl], AgSCF3 or Me4 NSeCF3 , and organohalides as substrates are reported. The new methodology enables a one-stop shop synthesis of aryl/alkenyl/alkynyl trifluoromethylthio- and selenoethers with a broad substrate scope (>60 examples with up to 97 % isolated yield). The method is scalable, and its robustness is evidenced by the late-stage functionalization of various bioactive molecules, which makes this reaction an attractive alternative in the synthesis of trifluoromethylthio- and selenoethers for pharmaceutical and agrochemical research and development.
Collapse
Affiliation(s)
- Sagar R Mudshinge
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Yuhao Yang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Zhichao Lu
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Petit‐Cancelier F, Ruyet L, Couve‐Bonnaire S, Besset T. Distal Construction of a Carbon‐SCF
2
R Bond on Aliphatic Alcohols Enabled by 1,5‐Hydrogen‐Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Louise Ruyet
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | | | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
10
|
Meng D, Lyu Y, Ni C, Zhou M, Li Y, Hu J. S
‐(Trifluoromethyl)Benzothioate (TFBT): A KF‐Based Reagent for Nucleophilic Trifluoromethylthiolation. Chemistry 2022; 28:e202104395. [DOI: 10.1002/chem.202104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Depei Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yichong Lyu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Min Zhou
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yang Li
- School of Chemistry and Chemical Engineering Chongqing University Chongqing 400030 P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
11
|
Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Gold (I/III)‐Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sagar R. Mudshinge
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Yuhao Yang
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University 2999 North Renmin Lu Shanghai 201620 China
| | - Gerald B. Hammond
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Zhichao Lu
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| |
Collapse
|
12
|
Xiao Y, Jia Y, Huang J, Li X, Zhou Z, Zhang J, Jiang M, Zhou X, Jiang Z, Yang Z. Synthesis of SCF
3
‐Substituted Sulfonium Ylides from Sulfonium Salts or α‐Bromoacetic Esters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yushan Xiao
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jinfeng Huang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Xiangyu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhiwen Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Zhong‐Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| |
Collapse
|
13
|
Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the para-position of dearomatized aryl rings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and efficient strategy for the oxidative spirocyclization of biaryl ynones has been developed, where nonsubstituted groups were on the para-position of the dearomatized aryl rings.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Beibei Chen
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P. R. China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
14
|
Wang L, Xie L, Fang Z, Zhang Q, Li D. Tandem trifluoromethylthiolation and cyclization of N-aryl-3-butenamides with AgSCF 3: divergent access to CF 3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. Org Chem Front 2022. [DOI: 10.1039/d2qo00207h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A AgSCF3-mediated tandem trifluoromethylthiolaton and cyclization of N-aryl-3-butenamides was developed. It showed divergent reactivities and enabled the selective syntheses of CF3S-substituted 3,4-dihydroquinolin-2-ones and azaspiro[4,5]dienones. The selectivity was achieved through different...
Collapse
|
15
|
Shen LY, Sun Y, Wang YQ, Li B, Yang WC, Dai P. K2S2O8-promoted radical trifluoromethylthiolation/spirocyclization for the synthesis of SCF3‑featured spiro[5,5]trienones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Mizuta S, Kitamura K, Morii Y, Ishihara J, Yamaguchi T, Ishikawa T. Trifluoromethylthiolation of Hindered α-Bromoamides with Nucleophilic Trifluoromethylthiolating Reagents. J Org Chem 2021; 86:18017-18029. [PMID: 34855413 DOI: 10.1021/acs.joc.1c02316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
General methods have not been previously developed for the synthesis of sterically hindered α-SCF3-substituted carbonyl compounds using nucleophilic trifluoromethylthiolating reagents. Thus, we herein report sp3C-SCF3 bond formation in hindered α-bromoamides containing 3-bromo-oxindoles and linear α-bromoamides using CuSCF3 or AgSCF3 under mild conditions to access sterically hindered α-SCF3-substituted amides. This transformation is applicable to not only 3-SCF3-substituted oxindoles but also primary and secondary amides and reveals a broad functional group tolerance. This method will benefit the fields of medicinal and agricultural chemistry.
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Kanami Kitamura
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Yuki Morii
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Jun Ishihara
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
17
|
Ye Z, Lei Z, Ye X, Zhou L, Wang Y, Yuan Z, Gao F, Britton R. Decatungstate Catalyzed Synthesis of Trifluoromethylthioesters from Aldehydes via a Radical Process. J Org Chem 2021; 87:765-775. [PMID: 34882428 DOI: 10.1021/acs.joc.1c02244] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a mild and general method for the trifluoromethylthiolation of aldehydes using N-trifluoromethylthiosaccharin as the CF3S radical source and sodium decatungstate (NaDT) as the photocatalyst. This reaction proceeds via hydrogen atom abstraction by photoactivated DT and features good functional groups and substrate tolerance. Generally, electron-rich aldehydes demonstrate better reactivity than electron-deficient ones and good selectivity is observed for the trifluoromethylthiolation of aldehydic C-H bonds over tertiary and benzylic C-H bonds. Preliminary mechanistic studies have shown that a free radical process is involved.
Collapse
Affiliation(s)
- Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiaodong Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
18
|
Kaboudin B, Ghashghaee M, Bigdeli A, Farkhondeh A, Eskandari M, Esfandiari H. Recent Advances on the Application of Langlois’ Reagent in Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202103867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mojtaba Ghashghaee
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Akram Bigdeli
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Amir Farkhondeh
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Mahboobe Eskandari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| | - Hesam Esfandiari
- Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
19
|
Kesavan A, Anbarasan P. Vicinal Trifluoromethylthioamination of Alkenes with Trifluoromethanesulfenamides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arunachalam Kesavan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Pazhamalai Anbarasan
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
20
|
Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britton R. Selective Trifluoromethylthiolation of Unactivated C(sp
3
)−H Bonds Enabled by Excited Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical isotope research center School of basic medical sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Robert Britton
- Department of Chemistry Simon Fraser University Burnaby British Columbia V5 A 1S6 Canada
| |
Collapse
|
21
|
Lipp A, Badir SO, Dykstra R, Gutierrez O, Molander GA. Catalyst-Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donor-Acceptor Complex Photoactivation. Adv Synth Catal 2021; 363:3507-3520. [PMID: 35273472 PMCID: PMC8903066 DOI: 10.1002/adsc.202100469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 08/06/2023]
Abstract
A catalyst- and additive-free decarbonylative trifluoromethylthiolation of aldehyde feedstocks has been developed. This operationally simple, scalable, and open-to-air transformation is driven by the selective photoexcitation of electron donor-acceptor (EDA) complexes, stemming from the association of 1,4-dihydropyridines (donor) with N-(trifluoromethylthio)phthalimide (acceptor), to trigger intermolecular single-electron transfer events under ambient- and visible light-promoted conditions. Extension to other electron acceptors enables the synthesis of thiocyanates and thioesters, as well as the difunctionalization of [1.1.1] propellane. The mechanistic intricacies of this photochemical paradigm are elucidated through a combination of experimental efforts and high-level quantum mechanical calculations [dispersion-corrected (U)DFT, DLPNO-CCSD(T), and TD-DFT]. This comprehensive study highlights the necessity for EDA complexation for efficient alkyl radical generation. Computation of subsequent ground state pathways reveals that SH2 addition of the alkyl radical to the intermediate radical EDA complex is extremely exergonic and results in a charge transfer event from the dihydropyridine donor to the N-(trifluoromethylthio)phthalimide acceptor of the EDA complex. Experimental and computational results further suggest that product formation also occurs via SH2 reaction of alkyl radicals with 1,2-bis(trifluoromethyl)disulfane, generated in-situ through combination of thiyl radicals.
Collapse
Affiliation(s)
- Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Yan-Mei L, Jin-Feng F, Long-Qiang H, Wei-Na L, Vessally E. Recent advances in intermolecular 1,2-difunctionalization of alkenes involving trifluoromethylthiolation. RSC Adv 2021; 11:24474-24486. [PMID: 35481061 PMCID: PMC9037010 DOI: 10.1039/d1ra02606b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Trifluoromethylthiolative difunctionalization of alkenes, a cheap and abundant feedstock, which installs a trifluoromethylthiol (SCF3) group and another unique functional group across the carbon-carbon double bonds, provides an ideal strategy for the preparation of β-functionalized alkyl trifluoromethyl sulfides and has become a hot topic recently. This review aims to summarize the major progress in this exciting research area, with particular emphasis on the mechanistic aspects of the reaction pathways.
Collapse
Affiliation(s)
- Li Yan-Mei
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Fu Jin-Feng
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - He Long-Qiang
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Li Wei-Na
- Institute of Chemical Industry and Environmental Engineering, Jiaozuo University Jiaozuo Henan 454000 China
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P.O. Box 19395-3697 Tehran Iran
| |
Collapse
|
23
|
Nobile E, Castanheiro T, Besset T. Radical-Promoted Distal C-H Functionalization of C(sp 3 ) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021; 60:12170-12191. [PMID: 32897632 DOI: 10.1002/anie.202009995] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Due to their unique properties, fluorinated scaffolds are pivotal compounds in pharmaceuticals, agrochemicals, and materials science. Over the last years, the development of versatile strategies for the selective synthesis of fluorinated molecules by direct C-H bond functionalization has attracted a lot of attention. In particular, the design of novel transformations based on a radical process was a bottleneck for distal C-H functionalization reactions, offering synthetic solutions for the selective introduction of fluorinated groups. This Minireview highlights the major contributions in this blossoming field. The development of new methodologies for the remote functionalization of aliphatic derivatives with various fluorinated groups based on a 1,5-hydrogen atom transfer process and a β-fragmentation reaction will be showcased and discussed.
Collapse
Affiliation(s)
- Enzo Nobile
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Castanheiro
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
24
|
Duan L, Wang Z, Zhao K, Gu Z. Enantioselective preparation of atropisomeric biaryl trifluoromethylsulfanes via ring-opening of cyclic diaryliodoniums. Chem Commun (Camb) 2021; 57:3881-3884. [PMID: 33871504 DOI: 10.1039/d1cc00171j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two convenient and practical methods for the synthesis of axially chiral biaryls bearing the trifluoromethylthio group are reported. A Cu-catalyzed enantioselective ring-opening reaction of cyclic diaryliodoniums with CsSCF3 enables the direct synthesis of trifluoromethylthiolated biaryl atropisomers in high yields and enantioselectivity. For unsymmetric cyclic diaryliodoniums bearing an adjacent group to the C-I bond, a two-step procedure is required to achieve good regio- and enantioselectivity.
Collapse
Affiliation(s)
- Longhui Duan
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhonggui Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Kun Zhao
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
25
|
Kurose R, Nishii Y, Miura M. Metal-Free Direct Trifluoromethylthiolation of Aromatic Compounds Using Triptycenyl Sulfide Catalyst. Org Lett 2021; 23:2380-2385. [PMID: 33703908 DOI: 10.1021/acs.orglett.1c00727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein we report an efficient synthetic method for the electrophilic trifluoromethylthiolation of aromatic compounds. The key is to use triptycenyl sulfide (Trip-SMe) and TfOH to enhance the electrophilicity of SCF3 fragment through the formation of sulfonium intermediates. This method enables direct installation of an SCF3 group onto unactivated aromatics at room temperature, adopting a commercially available saccharin-based reagent. Preliminary DFT calculation was carried out to investigate the substitution effect on the catalytic activity.
Collapse
Affiliation(s)
- Ryo Kurose
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Wang Y, Ye Z, Zhang H, Yuan Z. Recent Advances in the Development of Direct Trifluoromethylselenolation Reagents and Methods. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001508] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| |
Collapse
|
27
|
Liu J, Tian M, Li A, Ji L, Qiu D, Zhao X. Acid-promoted selective synthesis of trifluoromethylselenolated benzofurans with Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Nobile E, Castanheiro T, Besset T. Radical‐Promoted Distal C−H Functionalization of C(sp
3
) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Enzo Nobile
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Castanheiro
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
29
|
Barday M, Blieck R, Ruyet L, Besset T. Remote trifluoromethylthiolation of alcohols under visible light. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
New visible light organo(metal)-photocatalyzed fluoroalkylsulfanylation (RFS-) and fluoroalkylselenolation (RFSe-) reactions of organic substrates. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Liu Y, Xu X, Qing F. Deoxygenative 1,1‐Bis‐trifluoromethylthiolation of Aromatic Aldehydes to Access Bis(trifluoromethylthio)methylarenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yin‐Li Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
32
|
Soni S, Pali P, Ansari MA, Singh MS. Visible-Light Photocatalysis of Eosin Y: HAT and Complementing MS-CPET Strategy to Trifluoromethylation of β-Ketodithioesters with Langlois' Reagent. J Org Chem 2020; 85:10098-10109. [PMID: 32648747 DOI: 10.1021/acs.joc.0c01355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal- and oxidant-free photoinduced strategy for thioxo sulfur-selective trifluoromethylation of β-ketodithioesters at room temperature is reported. Excellent Z/E-stereoselectivity has been achieved with cheap and viable Langlois' reagent (CF3SO2Na, sodium triflinate) in the presence of eosin Y, which acts as a hydrogen atom transfer (HAT) catalyst. The reaction proceeds via disulfide intermediate disulfanediylbis(3-(alkylthio)-1-phenylprop-2-en-1-one) (a dimer of β-ketodithioester) followed by complementing proton-coupled electron transfer-mediated reverse HAT cycle of eosin Y. This operationally simple and efficient protocol allows direct access to triflinated α-oxoketene dithioacetals in good to excellent yields bearing diverse synthetically useful functional groups of different electronic and steric nature.
Collapse
Affiliation(s)
- Sonam Soni
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
33
|
Lin Q, Weng Z, Huang Y, Zhang M. [(bpy)CuSCF3]: A Practical and Efficient Reagent for the Construction of C–SCF3 Bonds. Synlett 2020. [DOI: 10.1055/s-0040-1707211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this account, we summarize recent work on the direct introduction of the SCF3 group by using [(bpy)CuSCF3] as trifluoromethylthiolating reagent. A number of efficient and convenient strategies have been disclosed for the synthesis of trifluoromethylthiolated compounds, including trifluoromethylthiolation of aryl, alkenyl, and alkyl halides, and arylboronic acids. These reactions afford various trifluoromethyl sulfides in good yields.1 Introduction2 Synthesis of [(bpy)CuSCF3]3 Trifluoromethylthiolation of Aryl Halides4 Trifluoromethylthiolation of Alkenyl Halides5 Trifluoromethylthiolation of Alkyl Halides6 Miscellaneous7 Conclusion
Collapse
Affiliation(s)
- Qi Lin
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
| | - Zhiqiang Weng
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University
| | - Yangjie Huang
- Fujian Engineering Research Center of New Chinese lacquer Material, Ocean College, Minjiang University
| | - Mengjia Zhang
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University
| |
Collapse
|
34
|
|
35
|
Zheng C, Huang S, Liu Y, Jiang C, Zhang W, Fang G, Hong J. Geometrically Selective Denitrative Trifluoromethylthiolation of β-Nitrostyrenes with AgSCF 3 for ( E)-Vinyl Trifluoromethyl Thioethers. Org Lett 2020; 22:4868-4872. [PMID: 32479731 DOI: 10.1021/acs.orglett.0c01714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient copper(II)-promoted denitrative trifluoromethylthiolation under mild reaction conditions has been developed for vinyl trifluoromethyl thioethers to construct Cvinyl-SCF3 bonds with stable AgSCF3 as a source of the trifluoromethylthio. This reaction system tolerates a broad range of functional groups to commendably achieve a high product yield and excellent stereoselectivity of E/Z.
Collapse
Affiliation(s)
- Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.,School of Chemical Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, P. R. China
| | - Shuai Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chao Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Zhang
- School of Chemical Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, P. R. China
| | - Ge Fang
- School of Chemical Engineering, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region 830052, P. R. China
| | - Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
36
|
Xu W, Xu X, Qing F. Synthesis and Properties of
CF
3
(
OCF
3
)
CH‐Substituted
Arenes and Alkenes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen‐Qi Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
37
|
Bi MX, Liu S, Huang Y, Xu XH, Qing FL. Cascade trifluoromethylthiolation and cyclization of N-[(3-aryl)propioloyl]indoles. Beilstein J Org Chem 2020; 16:657-662. [PMID: 32318122 PMCID: PMC7155893 DOI: 10.3762/bjoc.16.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/24/2020] [Indexed: 11/23/2022] Open
Abstract
A cascade oxidative trifluoromethylthiolation and cyclization of N-[(3-aryl)propioloyl]indoles with AgSCF3 is described. This protocol allows for the synthesis of novel bis(trifluoromethylthiolated) or trifluoromethylthiolated pyrrolo[1,2-a]indol-3-ones in moderate to good yields. Mechanistic investigations indicated that radical processes were probably involved in these transformations.
Collapse
Affiliation(s)
- Ming-Xi Bi
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Shuai Liu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yangen Huang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
38
|
Chen HT, Huang Y, Qing FL, Xu XH. Trifluoromethylthiolation of epoxides with AgSCF3: A new access to vinyl trifluoromethyl thioethers. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Liu YL, Qing FL, Xu XH. 1,2-Bis(trifluoromethylthiolation) of Aromatic Epoxides with AgSCF 3. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Li Liu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
- Key Laboratory of Science and Technology of Eco-Textiles; Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu 201620 Shanghai China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Science, Chinese Academy of Sciences; 345 Lingling Lu 200032 Shanghai China
| |
Collapse
|
40
|
He G, Jiang YH, Xiao X, Lin JH, Zheng X, Du RB, Cao YC, Xiao JC. Difluorocarbene-based trifluoromethylthiolation of terminal alkynes. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2019.109437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Sicignano M, Rodríguez RI, Capaccio V, Borello F, Cano R, De Riccardis F, Bernardi L, Díaz-Tendero S, Della Sala G, Alemán J. Asymmetric trifluoromethylthiolation of azlactones under chiral phase transfer catalysis. Org Biomol Chem 2020; 18:2914-2920. [DOI: 10.1039/d0ob00476f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first enantioselective method for the installation of the SCF3 group at the C-4 position of azlactones is described in the present communication under quinidinium phase transfer catalysis.
Collapse
Affiliation(s)
- Marina Sicignano
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano
- Italy
| | - Ricardo I. Rodríguez
- Organic Chemistry Department
- Módulo 1
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Vito Capaccio
- Organic Chemistry Department
- Módulo 1
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Fabio Borello
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano
- Italy
| | - Rafael Cano
- Organic Chemistry Department
- Módulo 1
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Francesco De Riccardis
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano
- Italy
| | - Luca Bernardi
- Department of Industrial Chemistry “Toso Montanari” & INSTM RU Bologna
- Alma Mater Studiorum University of Bologna
- 40136 Bologna
- Italy
| | - Sergio Díaz-Tendero
- Chemistry Department
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano
- Italy
| | - José Alemán
- Organic Chemistry Department
- Módulo 1
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
42
|
Franco F, Meninno S, Benaglia M, Lattanzi A. Formal α-trifluoromethylthiolation of carboxylic acid derivatives via N-acyl pyrazoles. Chem Commun (Camb) 2020; 56:3073-3076. [DOI: 10.1039/d0cc00116c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A direct and general one-pot approach to α-trifluoromethylthiolated amides, esters and carboxylic acids has been successfully developed under mild, catalytic and metal-free conditions.
Collapse
Affiliation(s)
- Francesca Franco
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia
- Università di Salerno
- Fisciano
- Italy
| | | | | |
Collapse
|
43
|
Kang H, Zhou B, Li M, Xue X, Cheng J. Quantification of the Activation Capabilities of Lewis/Brønsted Acid for Electrophilic Trifluoromethylthiolating Reagents
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huiying Kang
- State Key Laboratory of Elemento‐Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Biying Zhou
- State Key Laboratory of Elemento‐Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Man Li
- State Key Laboratory of Elemento‐Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento‐Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento‐Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
44
|
Chen T, Wu W, Weng Z. Visible-light photoredox catalyzed synthesis of polysubstituted furfuryl trifluoroacetamide derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zhang SB, Xu XH, Qing FL. Regioselective deoxygenative C H trifluoromethylthiolation of heteroaryl N-oxides with AgSCF3. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Ouyang Y, Xu X, Qing F. Hydrotrifluoromethylthiolation of Unactivated Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride through Deoxygenative Reduction and Photoredox Radical Processes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-TextilesMinistry of EducationCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
47
|
Ouyang Y, Xu X, Qing F. Hydrotrifluoromethylthiolation of Unactivated Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride through Deoxygenative Reduction and Photoredox Radical Processes. Angew Chem Int Ed Engl 2019; 58:18508-18512. [DOI: 10.1002/anie.201911323] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Yao Ouyang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of ScienceChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-TextilesMinistry of EducationCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
48
|
Zhu M, Li R, You Q, Fu W, Guo W. Synthesis of SCF
3
‐Containing Benzoxazines and Oxazolines via a Photoredox‐Catalyzed Radical Trifluoromethylthiolation‐Cyclization of Olefinic Amides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mei Zhu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Rongxia Li
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Qingqing You
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal University 471934 Luoyang, Henan P. R. China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemistry and Molecular EngineeringQingdao University of Science and Technology 266042 Qingdao P. R. China
| |
Collapse
|
49
|
|
50
|
Zhang M, Weng Z. Palladium-Catalyzed Tandem Synthesis of 2-Trifluoromethylthio(seleno)-Substituted Benzofused Heterocycles. Org Lett 2019; 21:5838-5842. [DOI: 10.1021/acs.orglett.9b01922] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mengjia Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Zhiqiang Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China
| |
Collapse
|