1
|
Xue M, Tan L, Zhang S, Wang JN, Mi X, Si W, Qiao Y, Lao Z, Meng X, Yang Y. Chemoenzymatic synthesis of sialyl-α2,3-lactoside-functionalized BSA conjugate inhibits influenza infection. Eur J Med Chem 2024; 276:116633. [PMID: 38968785 DOI: 10.1016/j.ejmech.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Influenza remains a global public health threat, and the development of new antivirals is crucial to combat emerging drug-resistant influenza strains. In this study, we report the synthesis and evaluation of a sialyl lactosyl (TS)-bovine serum albumin (BSA) conjugate as a potential multivalent inhibitor of the influenza virus. The key trisaccharide component, TS, was efficiently prepared via a chemoenzymatic approach, followed by conjugation to dibenzocyclooctyne-modified BSA via a strain-promoted azide-alkyne cycloaddition reaction. Biophysical and biochemical assays, including surface plasmon resonance, isothermal titration calorimetry, hemagglutination inhibition, and neuraminidase inhibition, demonstrated the strong binding affinity of TS-BSA to the hemagglutinin (HA) and neuraminidase (NA) proteins of the influenza virus as well as intact virion particles. Notably, TS-BSA exhibited potent inhibitory activity against viral entry and release, preventing cytopathic effects in cell culture. This multivalent presentation strategy highlights the potential of glycocluster-based antivirals for combating influenza and other drug-resistant viral strains.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lintongqing Tan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuai Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Weixue Si
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Ying Qiao
- CanSino Biologics Inc, 185 South Avenue, TEDA West District, Tianjin, 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
2
|
Xue M, Deng A, Wang JN, Mi X, Lao Z, Yang Y. A Zanamivir-protein conjugate mimicking mucin for trapping influenza virion particles and inhibiting neuraminidase activity. Int J Biol Macromol 2024; 275:133564. [PMID: 38955298 DOI: 10.1016/j.ijbiomac.2024.133564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ang Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
3
|
Romeo R, Legnani L, Chiacchio MA, Giofrè SV, Iannazzo D. Antiviral Compounds to Address Influenza Pandemics: An Update from 2016-2022. Curr Med Chem 2024; 31:2507-2549. [PMID: 37691217 DOI: 10.2174/0929867331666230907093501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
In recent decades, the world has gained experience of the dangerous effects of pandemic events caused by emerging respiratory viruses. In particular, annual epidemics of influenza are responsible for severe illness and deaths. Even if conventional influenza vaccines represent the most effective tool for preventing virus infections, they are not completely effective in patients with severe chronic disease and immunocompromised and new small molecules have emerged to prevent and control the influenza viruses. Thus, the attention of chemists is continuously focused on the synthesis of new antiviral drugs able to interact with the different molecular targets involved in the virus replication cycle. To date, different classes of influenza viruses inhibitors able to target neuraminidase enzyme, hemagglutinin protein, Matrix-2 (M2) protein ion channel, nucleoprotein or RNAdependent RNA polymerase have been synthesized using several synthetic strategies comprising the chemical modification of currently used drugs. The best results, in terms of inhibitory activity, are in the nanomolar range and have been obtained from the chemical modification of clinically used drugs such as Peramivir, Zanamivir, Oseltamir, Rimantadine, as well as sialylated molecules, and hydroxypyridinone derivatives. The aim of this review is to report, covering the period 2016-2022, the most recent routes related to the synthesis of effective influenza virus inhibitors.
Collapse
Affiliation(s)
- Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Laura Legnani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze del Farmaco e della Salute, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno D'Alcontres, Messina, 98166, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, Università di Messina, Contrada di Dio, Messina, 98166, Italy
| |
Collapse
|
4
|
Lao Z, Li Y, Mi X, Tang Q, Li J, Chen Y, Yang Y. Synthetic pentatrideca-valent triazolylsialoside inhibits influenza virus hemagglutinin/neuraminidase and aggregates virion particles. Eur J Med Chem 2023; 259:115578. [PMID: 37467617 DOI: 10.1016/j.ejmech.2023.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
A synthetic multivalent hemagglutinin and neuraminidase inhibitor was developed by the conjugation of a septa-valent triazolylsialoside to bovine serum albumin using di-(N-succinimidyl) adipate. Matrixassisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) confirmed the attachment of five septa-valent sialyl lactosides to the protein backbone, resulting in a pentatrideca-valent sialyl conjugate. This pseudo-glycoprotein demonstrated a high affinity for hemagglutinin/neuraminidase as well as for the drug-resistant NA mutation on the influenza virus surface due to the cluster effect. The conjugate also exhibited potent antiviral activity against a wide range of virus strains without cytotoxicity at high concentrations. Mechanistic studies revealed that the pentatrideca-valent sialyl conjugate bound strongly to the influenza virion particles through interactions with HA/NA on the virion surfaces. The KD of the interaction was approximately 1 μM, as determined by isothermal calorimetric titration, allowing the capture and trapping of the influenza virions and preventing their further infection of host cells. These findings provide insight into the development of new antiviral agents using multivalent sialic acid clusters.
Collapse
Affiliation(s)
- Zhiqi Lao
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Qi Tang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jie Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200011, China.
| | - Yue Chen
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
5
|
Li Y, Liu HY, Yang MJ, Liu D, Song JQ, Lao Z, Chen Y, Yang Y. Preparation of eicosavalent triazolylsialoside-conjugated human serum albumin as a dual hemagglutinin/neuraminidase inhibitor and virion adsorbent for the prevention of influenza infection. Carbohydr Res 2023; 532:108918. [PMID: 37586142 DOI: 10.1016/j.carres.2023.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
A triazolylsialoside-human serum albumin conjugate was prepared as a multivalent hemagglutinin and neuraminidase inhibitor using a di-(N-succinimidyl) adipate strategy. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that five tetravalent sialyl galactosides were grafted onto the protein backbone resulting in an eicosavalent triazolylsialoside-protein complex. Compared with monomeric sialic acid, molecular interaction studies showed that the synthetic pseudo-glycoprotein bound tightly not only to hemagglutinin (HA)/neuraminidase (NA) but also to mutated drug-resistant NA on the surface of the influenza virus with a dissociation constant (KD) in the 1 μM range, attributed to the cluster effect. Moreover, this glycoconjugate exhibited potent antiviral activity against a broad spectrum of virus strains and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVECs) and Madin-Darby canine kidney (MDCK) cells at high concentrations. Further mechanistic studies demonstrated this multivalent sialyl conjugate showed strong capture and trapping of influenza virions, thus disrupting the ability of the influenza virus to infect host cells. This research lays the experimental foundation for the development of new antiviral agents based on multivalent sialic acid-protein conjugates.
Collapse
Affiliation(s)
- Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Han-Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ming-Jiang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Dong Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Zhiqi Lao
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yue Chen
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
6
|
Yadav Y, Tyagi R, Kumar R, Sagar R. Conformationally locked sugar derivatives and analogues as potential neuraminidase inhibitors. Eur J Med Chem 2023; 255:115410. [PMID: 37120995 DOI: 10.1016/j.ejmech.2023.115410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The influenza virus remains a major health concern for mankind because it tends to mutate frequently and cause high morbidity. Influenza prevention and treatment are greatly aided by the use of antivirals. One such class of antivirals is neuraminidase inhibitors (NAIs), effective against influenza viruses. A neuraminidase on the virus's surface serves a vital function in viral propogation by assisting in the release of viruses from infected host cells. Neuraminidase inhibitors are the backbone in stoping such virus propagation thus helps in the treatment of influenza viruses infections. Two NAI medicines are licensed globally: Oseltamivir (Tamiflu™) and Zanamivir (Relanza™). There are two molecules that have acquired Japanese approval recently: Peramivir and Laninamivir, whereas Laninamivir octanoate is in Phase III clinical trials. The need for novel NAIs is due to frequent mutations in viruses and the rise in resistance against existing medication. The NA inhibitors (NAIs) are designed to have (oxa)cyclohexene scaffolds (a sugar scaffold) to mimic the oxonium transition state in the enzymatic cleavage of sialic acid. This review discusses in details and comprises all such conformationally locked (oxa)cyclohexene scaffolds and their analogues which have been recently designed and synthesized as potential neuraminidase inhibitors, thus as antiviral molecules. The structure-activity relationship of such diverese molecules has also been discussed in this review.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra, Haryana, 136119, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Cao Y, Song W, Chen X. Multivalent sialic acid materials for biomedical applications. Biomater Sci 2023; 11:2620-2638. [PMID: 36661319 DOI: 10.1039/d2bm01595a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sialic acid is a kind of monosaccharide expressed on the non-reducing end of glycoproteins or glycolipids. It acts as a signal molecule combining with its natural receptors such as selectins and siglecs (sialic acid-binding immunoglobulin-like lectins) in intercellular interactions like immunological surveillance and leukocyte infiltration. The last few decades have witnessed the exploration of the roles that sialic acid plays in different physiological and pathological processes and the use of sialic acid-modified materials as therapeutics for related diseases like immune dysregulation and virus infection. In this review, we will briefly introduce the biomedical function of sialic acids in organisms and the utilization of multivalent sialic acid materials for targeted drug delivery as well as therapeutic applications including anti-inflammation and anti-virus.
Collapse
Affiliation(s)
- Yusong Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. .,University of Science and Technology of China, Hefei, 230026, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, 130022, China
| |
Collapse
|
8
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
9
|
Qin HJ, Li S, Zhu YB, Bao YB, Tang Q, Liu WB, Zhong M, Zhao Y, Yang Y. Oseltamivir modified bovine serum albumin inhibits neuraminidase activity and accumulates virion particles to disturb influenza virus replication. Carbohydr Res 2022; 520:108631. [PMID: 35839640 DOI: 10.1016/j.carres.2022.108631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The preparation of oseltamivir-bovine serum albumin conjugate (OS-BSA) for use as a multivalent influenza neuraminidase (NA) inhibitor is reported. Briefly, the oseltamivir azidohexyl ester was synthesized and covalently bound via an orthogonal attachment to bicyclononyne-modified BSA using copper-free click chemistry. Primary antiviral assays on NA protein and cellular levels showed that the synthetic multivalent OS-BSA conjugate was a more effective inhibitor than monomeric OS azidohexyl ester. Further investigation of the antiviral mechanism found that the prepared OS-BSA could not only be used as a multivalent NA inhibitor but also acted as an adsorbent for the aggregation of virion particles, contributing to the inhibition of the influenza viral replication cycle. Our findings provide insight into the antiviral mechanism of multivalent NA inhibitors and form a basis for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Hai-Juan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yu-Bo Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yan-Bin Bao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Qi Tang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wen-Bin Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ming Zhong
- Medical College of Shaoguan University, Shaoguan, 512026, Guangdong Province, China.
| | - YueTao Zhao
- School of Life Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| | - Yang Yang
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
10
|
Wei X, Du W, Duca M, Yu G, de Vries E, de Haan CAM, Pieters RJ. Preventing Influenza A Virus Infection by Mixed Inhibition of Neuraminidase and Hemagglutinin by Divalent Inhibitors. J Med Chem 2022; 65:7312-7323. [PMID: 35549211 PMCID: PMC9150099 DOI: 10.1021/acs.jmedchem.2c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Divalent inhibitors
of the neuraminidase enzyme (NA) of the Influenza
A virus were synthesized with vastly different spacers. The spacers
varied from 14 to 56 atoms and were relatively rigid by way of the
building blocks and their connection by CuAAC. As the ligand for these
constructs, a Δ4-β-d-glucoronide was
used, which can be prepared form N-acetyl glucosamine.
This ligand showed good NA inhibitory potency but with room for improvement
by multivalency enhancement. The synthesized compounds showed modest
potency enhancement in NA activity assays but a sizeable potency increase
in a 4-day cytopathic effect assay. The demonstration that the compounds
can also inhibit hemagglutinin in addition to NA may be the cause
of the enhancement.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Margherita Duca
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases and Immunology, Faculty Veterinary Medicine, Utrecht University, Utrecht NL-3508 TB, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, Utrecht NL-3508 TB, The Netherlands
| |
Collapse
|
11
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
12
|
Yu Y, Zhou JP, Jin YH, Wang X, Shi XX, Yu P, Zhong M, Yang Y. Guanidinothiosialoside-Human Serum Albumin Conjugate Mimics mucin Barrier to Restrict Influenza Infection. Int J Biol Macromol 2020; 162:84-91. [PMID: 32522538 DOI: 10.1016/j.ijbiomac.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
A guanidinothiosialoside-human serum albumin conjugate as mucin mimic was prepared via a copper-free click reaction. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that three sialoside groups were grafted onto the protein backbone. The synthetic glycoconjugate exhibited strong influenza virion capture and trapping capability. Further mechanistic studies showed that this neomucin bound tightly to neuraminidase on the surface of influenza virus with a dissociation constant (KD) in the nanomolar range and had potent antiviral activity against a broad spectrum of virus strains. Most notably, the glycoconjugate acted as a biobarrier was able to protect Madin-Darby canine kidney (MDCK) cells from influenza viral infection with 50% effective concentrations (EC50) in the nanomolar range and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVEC) at high concentrations. This research establishes an attractive strategy for the development of new multivalent antiviral agents based on mucin structure. Moreover, the method for the functionalization of the natural biological macromolecular scaffold with bioactive small molecules also lays the experimental foundation for potential biomedical and biomaterial applications.
Collapse
Affiliation(s)
- Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Jia-Ping Zhou
- Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yin-Hua Jin
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xue Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Xiao-Xiao Shi
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| | - Ming Zhong
- Medical College, Shaoguan University, Shaoguan 512026, Guangdong Province, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China; China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457,China.
| |
Collapse
|
13
|
Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase. Biophys J 2020; 119:2275-2289. [PMID: 33130120 DOI: 10.1016/j.bpj.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza neuraminidase is an important drug target. Glycans are present on neuraminidase and are generally considered to inhibit antibody binding via their glycan shield. In this work, we studied the effect of glycans on the binding kinetics of antiviral drugs to the influenza neuraminidase. We created all-atom in silico systems of influenza neuraminidase with experimentally derived glycoprofiles consisting of four systems with different glycan conformations and one system without glycans. Using Brownian dynamics simulations, we observe a two- to eightfold decrease in the rate of ligand binding to the primary binding site of neuraminidase due to the presence of glycans. These glycans are capable of covering much of the surface area of neuraminidase, and the ligand binding inhibition is derived from glycans sterically occluding the primary binding site on a neighboring monomer. Our work also indicates that drugs preferentially bind to the primary binding site (i.e., the active site) over the secondary binding site, and we propose a binding mechanism illustrating this. These results help illuminate the complex interplay between glycans and ligand binding on the influenza membrane protein neuraminidase.
Collapse
|
14
|
Zhong M, Yu Y, Song JQ, Jia TW, Liu AY, Zhao TF, He HJ, Yang MB, Zhang WX, Yang Y. Amide-sialoside protein conjugates as neomucin bioshields prevent influenza virus infection. Carbohydr Res 2020; 495:108088. [PMID: 32807356 DOI: 10.1016/j.carres.2020.108088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
We report the preparation of multivalent amide-sialoside-decorated human serum albumin (HSA) and bovine serum albumin (BSA) as mimics of natural mucin and bioshields against influenza virus infection. Free sialic acid with an amine on C-2 was covalently attached to the protein scaffolds using di-(N-succinimidyl) adipate. Dynamic light scattering (DLS) showed that the synthetic neomucins were able to act as bioshields and aggregate the influenza virion particles. The dissociation constants (KD) of the interactions between the prepared glycoconjugates and three different viral strains were measured by isothermal titration calorimetry (ITC) indicating the multivalent presentation of sialyl ligands on the HSA and BSA backbones can dramatically enhance the adsorbent capability compared to the corresponding monomeric sialoside. Hemagglutinin inhibition (HAI) and neuraminidase inhibition (NAI) assays showed that the glycoconjugates acted as moderate HA and NA inhibitors, thus impeding viral infection. Moreover, the different binding affinities of the glycoproteins to HA and NA proteins from different influenza viruses demonstrated the importance of HA/NA balance in viral replication and evolution. These findings provide a foundation for the development of antiviral drugs and viral adsorbent materials based on mimicking the structure of mucin.
Collapse
Affiliation(s)
- Ming Zhong
- Medical College of Shaoguan University, Shaoguan, 512026, Guangdong Province, China
| | - Yao Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Tian-Wei Jia
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ao-Yun Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Teng-Fei Zhao
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hao-Jie He
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Mei-Bing Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wen-Xuan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
15
|
Yu Y, Qin HJ, Shi XX, Song JQ, Zhou JP, Yu P, Fan ZC, Zhong M, Yang Y. Thiosialoside-decorated polymers use a two-step mechanism to inhibit both early and late stages of influenza virus infection. Eur J Med Chem 2020; 199:112357. [DOI: 10.1016/j.ejmech.2020.112357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
|
16
|
Vostrikov NS, Zagitov VV, Ivanov SP, Lobov AN, Gabdrakhmanova SF, Miftakhov MS. Fluorine containing analogues of cloprostenol. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Song Y, Wang X, Zhang J. Enhancement of bioconversion gangliosides to monosialotetrahexosylganglioside by in situ sialic acid removal and recovery. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yansong Song
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jianguo Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| |
Collapse
|
18
|
Divalent oseltamivir analogues as potent influenza neuraminidase inhibitors. Carbohydr Res 2019; 477:32-38. [DOI: 10.1016/j.carres.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022]
|
19
|
Development of a Microwave-assisted Chemoselective Synthesis of Oxime-linked Sugar Linkers and Trivalent Glycoclusters. Pharmaceuticals (Basel) 2019; 12:ph12010039. [PMID: 30875805 PMCID: PMC6469176 DOI: 10.3390/ph12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/29/2023] Open
Abstract
A rapid, high-yielding microwave-mediated synthetic procedure was developed and optimized using a model system of monovalent sugar linkers, with the ultimate goal of using this method for the synthesis of multivalent glycoclusters. The reaction occurs between the aldehyde/ketone on the sugars and an aminooxy moiety on the linker/trivalent core molecules used in this study, yielding acid-stable oxime linkages in the products and was carried out using equimolar quantities of reactants under mild aqueous conditions. Because the reaction is chemoselective, sugars can be incorporated without the use of protecting groups and the reactions can be completed in as little as 30 min in the microwave. As an added advantage, in the synthesis of the trivalent glycoclusters, the fully substituted trivalent molecules were the major products produced in excellent yields. These results illustrate the potential of this rapid oxime-forming microwave-mediated reaction in the synthesis of larger, more complex glycoconjugates and glycoclusters for use in a wide variety of biomedical applications.
Collapse
|
20
|
Sapozhnikova KA, Slesarchuk NA, Orlov AA, Khvatov EV, Radchenko EV, Chistov AA, Ustinov AV, Palyulin VA, Kozlovskaya LI, Osolodkin DI, Korshun VA, Brylev VA. Ramified derivatives of 5-(perylen-3-ylethynyl)uracil-1-acetic acid and their antiviral properties. RSC Adv 2019; 9:26014-26023. [PMID: 35531032 PMCID: PMC9070374 DOI: 10.1039/c9ra06313g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 01/03/2023] Open
Abstract
The propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2⋯4 antiviral 5-(perylen-3-ylethynyl)uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching. Due to the solubility issues, Pom group removal succeeded only for compounds with one peryleneethynyluracil unit. Four compounds, including one ramified cluster 9f, showed remarkable 1⋯3 nM EC50 values against TBEV in cell culture. Ramified clusters of antiviral perylenylethynyl scaffold were prepared using CuAAC reaction of 5-(perylen-3-ylethynyl)-3-pivaloyloxymethyl-1-(propargylamidomethyl)uracil with azides. Compounds inhibited TBEV reproduction at nanomolar concentrations.![]()
Collapse
Affiliation(s)
| | - Nikita A. Slesarchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Department of Chemistry
- Lomonosov Moscow State University
| | - Alexey A. Orlov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
| | - Evgeny V. Khvatov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
- Moscow 108819
| | | | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Biotech Innovations Ltd
- Moscow 119992
| | | | - Liubov I. Kozlovskaya
- FSBSI "Chumakov FSC R&D IBP RAS"
- Moscow 108819
- Russia
- Sechenov First Moscow State Medical University
- Moscow 119991
| | - Dmitry I. Osolodkin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- FSBSI "Chumakov FSC R&D IBP RAS"
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Department of Biology and Biotechnology
- National Research University Higher School of Economics
| | - Vladimir A. Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Moscow 117997
- Russia
- Biotech Innovations Ltd
- Moscow 119992
| |
Collapse
|
21
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhao TF, Qin HJ, Yu Y, Yang MB, Chang H, Guo N, He Y, Yang Y, Yu P. Multivalent zanamivir-bovine serum albumin conjugate as a potent influenza neuraminidase inhibitor. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1390577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Teng-Fei Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hai-Juan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Yao Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mei-Bing Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hao Chang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Na Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun He
- Research Center for Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Lab of Industrial Fermentation Microbiology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
24
|
Yang Y, Liu HP, Yu Q, Yang MB, Wang DM, Jia TW, He HJ, He Y, Xiao HX, Iyer SS, Fan ZC, Meng X, Yu P. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr Res 2016; 435:68-75. [DOI: 10.1016/j.carres.2016.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/28/2022]
|