1
|
Aguilar MI, Yarovsky I. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling. J Mol Biol 2024; 436:168646. [PMID: 38848868 DOI: 10.1016/j.jmb.2024.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
Tomohara K, Kusaba S, Masui M, Uchida T, Nambu H, Nose T. Ammonium carboxylates in the ammonia-Ugi reaction: one-pot synthesis of α,α-disubstituted amino acid derivatives including unnatural dipeptides. Org Biomol Chem 2024; 22:6999-7005. [PMID: 39118586 DOI: 10.1039/d4ob00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 μM.
Collapse
Affiliation(s)
- Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Satoru Kusaba
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mana Masui
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisanori Nambu
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Chiesa E, Anastasi F, Clerici F, Lumina EM, Genta I, Pellegrino S, Gelmi ML. Stereochemical Behavior of Pyrrolo-Pyrazole Peptidomimetics Promoting Phase-Selective Supramolecular Organogels. Gels 2024; 10:263. [PMID: 38667682 PMCID: PMC11049432 DOI: 10.3390/gels10040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Supramolecular gels were developed by taking advantage of an assembly of small dipeptides containing pyrrolo-pyrazole scaffolds. The dipeptides were prepared through a robust and ecofriendly synthetic approach from the commercially available starting materials of diazoalkanes and maleimides. By playing with the functionalization of the scaffold, the choice of the natural amino acid, and the stereochemistry, we were able to obtain phase-selective gels. In particular, one peptidomimetic showed gelation ability and thermoreversibility in aromatic solvents at very low concentrations. Rheology tests showed a typical viscoelastic solid profile, indicating the formation of strong gels that were stable under high mechanical deformation. NMR studies were performed, allowing us to determine the conformational and stereochemical features at the base of the supramolecular interactions.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.C.)
| | - Francesco Anastasi
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Venezian 21, 20133 Milano, Italy; (F.A.); (E.M.L.)
| | - Francesca Clerici
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Venezian 21, 20133 Milano, Italy; (F.A.); (E.M.L.)
| | - Edoardo Mario Lumina
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Venezian 21, 20133 Milano, Italy; (F.A.); (E.M.L.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.C.)
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Venezian 21, 20133 Milano, Italy; (F.A.); (E.M.L.)
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Venezian 21, 20133 Milano, Italy; (F.A.); (E.M.L.)
| |
Collapse
|
4
|
Hu T, Zhang Z, Reches M. A self-standing superhydrophobic material formed by the self-assembly of an individual amino acid. J Colloid Interface Sci 2024; 655:899-908. [PMID: 37979295 DOI: 10.1016/j.jcis.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS There is a growing interest in designing superhydrophobic materials for many applications including self-clean surfaces, separation systems, and antifouling solutions. Peptides and amino acids offer attractive building blocks for these materials since they are biocompatible and biodegradable and can self-assemble into complex ordered structures. EXPERIMENTS AND SIMULATIONS We designed a self-standing superhydrophobic material through the self-assembly of an individual functionalized aromatic amino acid, Cbz-Phe(4F). The self-assembly of Cbz-Phe(4F) was investigated by experimental and computational methods. Moreover, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. The mechanical properties and chemical stability of this self-standing superhydrophobic material were demonstrated. FINDINGS The designed Cbz-Phe(4F) self-assembled into fibrous structures in solution. Molecular dynamics (MD) simulations revealed that the fibrous backbone of Cbz-Phe(4F) aggregations was stabilized through hydrogen bonds, whereas the isotropic growth of the aggregates was driven by hydrophobic interactions. Importantly, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. Moreover, this material had a high mechanical strength, with a Young's modulus of 53 GPa, resistance to enzymatic degradation, and thermal stability up to 200 ℃. This study provides a simple strategy to generate smart and functional materials by the simple self-assembly of functional individual amino acids.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
5
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
6
|
Bellotto O, D'Andrea P, Marchesan S. Nanotubes and water-channels from self-assembling dipeptides. J Mater Chem B 2023. [PMID: 36790014 DOI: 10.1039/d2tb02643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dipeptides are attractive building blocks for biomaterials in light of their inherent biocompatibility, biodegradability, and simplicity of preparation. Since the discovery of diphenylalanine (Phe-Phe) self-assembling ability into nanotubes, research efforts have been devoted towards the identification of other dipeptide sequences capable of forming these interesting nanomorphologies, although design rules towards nanotube formation are still elusive. In this review, we analyze the dipeptide sequences reported thus far for their ability to form nanotubes, which often feature water-filled supramolecular channels as revealed by single-crystal X-ray diffraction, as well as their properties, and their potential biological applications, which span from drug delivery and regenerative medicine, to bioelectronics and bioimaging.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Paola D'Andrea
- Life Sc. Dept., University of Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Silvia Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. .,INSTM, Unit of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
7
|
Zhang Y, An N, Zhao Y, Li X, Shen X, Wang J, Sun X, Yuan Q. Efficient biosynthesis of α-aminoadipic acid via lysine catabolism in Escherichia coli. Biotechnol Bioeng 2023; 120:312-317. [PMID: 36226358 DOI: 10.1002/bit.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
α-Aminoadipic acid (AAA) is a nonproteinogenic amino acid with potential applications in pharmaceutical, chemical and animal feed industries. Currently, AAA is produced by chemical synthesis, which suffers from high cost and low production efficiency. In this study, we engineered Escherichia coli for high-level AAA production by coupling lysine biosynthesis and degradation pathways. First, the lysine-α-ketoglutarate reductase and saccharopine dehydrogenase from Saccharomyces cerevisiae and α-aminoadipate-δ-semialdehyde dehydrogenase from Rhodococcus erythropolis were selected by in vitro enzyme assays for pathway assembly. Subsequently, lysine supply was enhanced by blocking its degradation pathway, overexpressing key pathway enzymes and improving nicotinamide adenine dineucleotide phosphate (NADPH) regeneration. Finally, a glutamate transporter from Corynebacterium glutamicum was introduced to elevate AAA efflux. The final strain produced 2.94 and 5.64 g/L AAA in shake flasks and bioreactors, respectively. This work provides an efficient and sustainable way for AAA production.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xueqi Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Du Y, Li L, Zheng Y, Liu J, Gong J, Qiu Z, Li Y, Qiao J, Huo YX. Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Appl Environ Microbiol 2022; 88:e0161722. [PMID: 36416555 PMCID: PMC9746297 DOI: 10.1128/aem.01617-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The emergence of antimicrobial resistance is a global health concern and calls for the development of novel antibiotic agents. Antimicrobial peptides seem to be promising candidates due to their diverse sources, mechanisms of action, and physicochemical characteristics, as well as the relatively low emergence of resistance. The incorporation of noncanonical amino acids into antimicrobial peptides could effectively improve their physicochemical and pharmacological diversity. Recently, various antimicrobial peptides variants with improved or novel properties have been produced by the incorporation of single and multiple distinct noncanonical amino acids. In this review, we summarize strategies for the incorporation of noncanonical amino acids into antimicrobial peptides, as well as their features and suitabilities. Recent applications of noncanonical amino acid incorporation into antimicrobial peptides are also presented. Finally, we discuss the related challenges and prospects.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Li Li
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Yue Zheng
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jiaheng Liu
- School of Chemical Engineering, Sichuan University (SCU), Chengdu, China
| | - Julia Gong
- Marymount High School, Los Angeles, California, USA
| | - Zekai Qiu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yanni Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Impresari E, Bossi A, Lumina EM, Ortenzi MA, Kothuis JM, Cappelletti G, Maggioni D, Christodoulou MS, Bucci R, Pellegrino S. Fatty Acids/Tetraphenylethylene Conjugates: Hybrid AIEgens for the Preparation of Peptide-Based Supramolecular Gels. Front Chem 2022; 10:927563. [PMID: 36003614 PMCID: PMC9393247 DOI: 10.3389/fchem.2022.927563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emissive materials are gaining particular attention in the last decades due to their wide application in different fields, from optical devices to biomedicine. In this work, compounds having these kinds of properties, composed of tetraphenylethylene scaffold combined with fatty acids of different lengths, were synthesized and characterized. These molecules were found able to self-assemble into different supramolecular emissive structures depending on the chemical composition and water content. Furthermore, they were used as N-terminus capping agents in the development of peptide-based materials. The functionalization of a 5-mer laminin-derived peptide led to the obtainment of luminescent fibrillary materials that were not cytotoxic and were able to form supramolecular gels in aqueous environment.
Collapse
Affiliation(s)
- Elisa Impresari
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “G.Natta”, Consiglio Nazionale delle Ricerche (CNR-SCITEC), Milan, Italy
- SmartMatLab Center, Milan, Italy
| | - Edoardo Mario Lumina
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Marco Aldo Ortenzi
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | | | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Michael S. Christodoulou
- Departiment of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
11
|
Self-Assembled Peptide Nanostructures for ECM Biomimicry. NANOMATERIALS 2022; 12:nano12132147. [PMID: 35807982 PMCID: PMC9268130 DOI: 10.3390/nano12132147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Collapse
|
12
|
Deciphering the conformational landscape of few selected aromatic noncoded amino acids (NCAAs) for applications in rational design of peptide therapeutics. Amino Acids 2022; 54:1183-1202. [PMID: 35723743 PMCID: PMC9207436 DOI: 10.1007/s00726-022-03175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/23/2022] [Indexed: 11/01/2022]
Abstract
Amino acids are the essential building blocks of both synthetic and natural peptides, which are crucial for biological functions and also important as biological probes for mapping the complex protein-protein interactions (PPIs) in both prokaryotic and eukaryotic systems. Mapping the PPIs through the chemical biology approach provides pharmacologically relevant peptides, which can have agonistic or antagonistic effects on the targeted biological systems. It is evidenced that ≥ 60 peptide-based drugs have been approved by the US-FDA so far, and the number will improve further in the foreseeable future, as ≥ 140 peptides are currently in clinical trials. However, natural peptides often require fine-tuning of their pharmacological properties by strategically replacing the αL-amino acids of the peptides with non-coded amino acids (NCAA), for which codons are absent in the genetic code for biosynthesis of proteins, prior to their applications as therapeutics. Considering the diverse repertoire of the NCAAs, the conformational space of many NCAAs is yet to be explored systematically in the context of the rational design of therapeutic peptides. The current study deciphers the conformational landscape of a few such Cα-substituted aromatic NCAAs (Ing: 2-indanyl-L-Glycine; Bpa: 4-benzoyl-L-phenylalanine; Aic: 2-aminoindane-2-carboxylic acid) both in the context of tripeptides and model synthetic peptide sequences, using alanine (Ala) and proline (Pro) as the reference. The combined data obtained from the computational and biophysical studies indicate the general success of this approach, which can be exploited further to rationally design optimized peptide sequences of unusual architecture with potent antimicrobial, antiviral, gluco-regulatory, immunomodulatory, and anti-inflammatory activities.
Collapse
|
13
|
Kaur R, Banga S, Babu SA. Construction of carbazole-based unnatural amino acid scaffolds via Pd(II)-catalyzed C(sp 3)-H functionalization. Org Biomol Chem 2022; 20:4391-4414. [PMID: 35583129 DOI: 10.1039/d2ob00658h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of carbazole-based unnatural α-amino acid and non-α-amino acid derivatives via a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided β-C(sp3)-H activation/functionalization method. Various N-phthaloyl, DL-, L- and D-carboxamides derived from their corresponding α-amino acids, non-α-amino acids and aliphatic carboxamides were subjected to the β-C(sp3)-H functionalization with 3-iodocarbazoles in the presence of a Pd(II) catalyst to afford the corresponding carbazole moiety installed unnatural amino acid derivatives and aliphatic carboxamides. Carbazole motif-containing racemic (DL) and enantiopure (L and D) amino acid derivatives including phenylalanine, norvaline, leucine, norleucine and 2-aminooctanoic acid with anti-stereochemistry and various non-α-amino acid derivatives including GABA have been synthesized. Removal of the 8-aminoquinoline directing group, deprotection of the phthalimide moiety and the preparation of carbazole amino acid derivatives containing free amino- and carboxylate groups are shown. The carbazole motif is prevalent in alkaloids and biologically active molecules and functional materials. Thus, this work on the synthesis of carbazole-based unnatural amino acid derivatives would enrich the libraries of unnatural amino acid derivatives and carbazoles.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Shefali Banga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
14
|
Stimulus-responsive liposomes for biomedical applications. Drug Discov Today 2021; 26:1794-1824. [PMID: 34058372 DOI: 10.1016/j.drudis.2021.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Liposomes are amphipathic lipidic supramolecular aggregates that are able to encapsulate and carry molecules of both hydrophilic and hydrophobic nature. They have been widely used as in vivo drug delivery systems for some time because they offer features such as synthetic flexibility, biodegradability, biocompatibility, low immunogenicity, and negligible toxicity. In recent years, the chemical modification of liposomes has paved the way to the development of smart liposome-based drug delivery systems, which are characterized by even more tunable and disease-directed features. In this review, we highlight the different types of chemical modification introduced to date, with a particular focus on internal stimuli-responsive liposomes and prodrug activation.
Collapse
|
15
|
Bucci R, Foschi F, Loro C, Erba E, Gelmi ML, Pellegrino S. Fishing in the Toolbox of Cyclic Turn Mimics: a Literature Overview of the Last Decade. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raffaella Bucci
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Francesca Foschi
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Camilla Loro
- Dipartimento di Scienze e Alta Tecnologie,DiSAT Università degli Studi dell'Insubria Via Valleggio 9 Como 20100 Italy
| | - Emanuela Erba
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| | - Sara Pellegrino
- Dipartimento di Scienze farmaceutiche,DISFARM Università degli Studi di Milano Via Venezian 21 Milano 20133 Italy
| |
Collapse
|
16
|
Santi S, Bisello A, Cardena R, Tomelleri S, Schiesari R, Biondi B, Crisma M, Formaggio F. Flat, C α,β -Didehydroalanine Foldamers with Ferrocene Pendants: Assessing the Role of α-Peptide Dipolar Moments. Chempluschem 2021; 86:723-730. [PMID: 33825347 DOI: 10.1002/cplu.202100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Indexed: 12/28/2022]
Abstract
The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,β -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.
Collapse
Affiliation(s)
- Saverio Santi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Annalisa Bisello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Roberta Cardena
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Silvia Tomelleri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Renato Schiesari
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
17
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
18
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
19
|
Bucci R, Bossi A, Erba E, Vaghi F, Saha A, Yuran S, Maggioni D, Gelmi ML, Reches M, Pellegrino S. Nucleobase morpholino β amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Sci Rep 2020; 10:19331. [PMID: 33168883 PMCID: PMC7652887 DOI: 10.1038/s41598-020-76297-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022] Open
Abstract
Bioinspired smart materials represent a tremendously growing research field and the obtainment of new building blocks is at the molecular basis of this technology progress. In this work, colloidal materials have been prepared in few steps starting from ribonucleosides. Nucleobase morpholino β-amino acids are the chimera key intermediates allowing Phe-Phe dipeptides' functionalization with adenine and thymine. The obtained compounds self-aggregate showing enhanced photoluminescent features, such as deep blue fluorescence and phosphorescence emissions.
Collapse
Affiliation(s)
- Raffaella Bucci
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Alberto Bossi
- Istituto Di Scienze E Tecnologie Chimiche "G. Natta" del Consiglio Nazionale Delle Ricerche (CNR-SCITEC), via Fantoli 16/15, 20138, Milan, Italy
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
| | - Emanuela Erba
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Francesco Vaghi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Abhijit Saha
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sivan Yuran
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Daniela Maggioni
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
- Dipartimento Di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sara Pellegrino
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy.
| |
Collapse
|
20
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
21
|
Locarno S, Argentiere S, Ruffoni A, Maggioni D, Soave R, Bucci R, Erba E, Lenardi C, Gelmi ML, Clerici F. Self-assembled hydrophobic Ala-Aib peptide encapsulating curcumin: a convenient system for water insoluble drugs. RSC Adv 2020; 10:9964-9975. [PMID: 35498617 PMCID: PMC9050355 DOI: 10.1039/c9ra10981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
The exploitation of self-assembled systems to improve the solubility of drugs is getting more and more attention. Among the different types of self-assembled biomaterials, peptides and in particular peptides containing non-coded amino acids (NCAPs) are promising because their use opens the door to more stable materials inducing increased stability to proteolysis. New classes of NCAP, Ac-Ala-X-Ala-Aib-AlaCONH2 (X = alpha-aminoisobutyric acid (Aib) or X = cyclopentane amino acid (Ac5c)) have been prepared and the correlation between the different secondary peptide structure and solvent (i.e. CD3CN, CD3OH, H2O/D2O) verified by NMR. Furthermore, the formation of a nanocolloidal system in water was deeply studied by DLS and the morphology of the obtained spherical aggregates with nanometric dimensions was assessed by TEM. Aib containing pentapeptide was selected for greater ease of synthesis. Its ability to encapsulate curcumin, as a model insoluble drug molecule, was investigated using fluorescence emission and confocal microscopy analyses. Two different approaches were used to study the interaction between curcumin and peptide aggregates. In the first approach peptide aggregates were formed in the presence of curcumin, while in the second approach curcumin was added to the already formed peptide aggregates. We succeeded in our challenge by using the second approach and 53.8% of added curcumin had been encapsulated.
Collapse
Affiliation(s)
- Silvia Locarno
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Simona Argentiere
- CIMAINA, Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics Via Celoria 16 20133 Milano Italy
| | | | - Daniela Maggioni
- Department of Chemistry, Università Degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Raffaella Soave
- Institute of Chemical Sciences and Technologies "Giulio Natta", Italian National Research Council, CNR-SCITEC Via Golgi 19 20133 Milano Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Emanuela Erba
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Cristina Lenardi
- CIMAINA, Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics Via Celoria 16 20133 Milano Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| |
Collapse
|
22
|
Roy K, Chetia M, Sarkar AK, Chatterjee S. Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb 2+, Hg 2+) absorbents and arsenic( iii/ v) detectors. RSC Adv 2020; 10:42062-42075. [PMID: 35516776 PMCID: PMC9057852 DOI: 10.1039/d0ra08407g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems via the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni2+, Co2+, Pb2+ and Hg2+) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications. Self- and co-assembled gels from charge complementary peptides with waste water remediation applications.![]()
Collapse
Affiliation(s)
- Karabi Roy
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Monikha Chetia
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Ankan Kumar Sarkar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Sunanda Chatterjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|
23
|
Roy B, Govindaraju T. Amino Acids and Peptides as Functional Components in Arylenediimide-Based Molecular Architectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bappaditya Roy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bengaluru-560064, Karnataka, India
| |
Collapse
|
24
|
Pecnikaj I, Foschi F, Bucci R, Gelmi ML, Castellano C, Meneghetti F, Penso M. Stereoselective Synthesis of α,α′-Dihydroxy-β,β′-diaryl-β-amino Acids by Mannich-Like Condensation of Hydroarylamides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ilir Pecnikaj
- Department of Chemistry; University of Milan; Via Golgi 19 20133 Milano Italy
| | - Francesca Foschi
- Department of Chemistry; University of Milan; Via Golgi 19 20133 Milano Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; Via Venezian 21 20133 Milano Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; Via Venezian 21 20133 Milano Italy
| | - Carlo Castellano
- Department of Chemistry; University of Milan; Via Golgi 19 20133 Milano Italy
| | - Fiorella Meneghetti
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; Via Venezian 21 20133 Milano Italy
| | - Michele Penso
- CNR-Institute of Molecular Science and Technologies (ISTM); Via Golgi 19 20133 Milano Italy
| |
Collapse
|
25
|
Locarno S, Eleta-Lopez A, Lupo MG, Gelmi ML, Clerici F, Bittner AM. Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules. RSC Adv 2019; 9:20565-20572. [PMID: 35515570 PMCID: PMC9065743 DOI: 10.1039/c9ra02486g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
We investigate the electrospinning of small molecules, specifically designed peptide derivatives of the pyrazole-isothiazole scaffold. Such non-natural peptides enhance the spectrum of fundamental materials used for electrospinning. Unlike standard electrospun materials, our peptides are not polymeric, but able to aggregate in solution and especially during processing. They contain donor/acceptor groups that can form hydrogen bonds, and groups that are able to generate π-stacking interactions, which are known as important requirements for assembly processes. The pyrazole-isothiazole derivatives were synthesized by means of a 1,3-dipolar cycloaddition reaction, which is completely regioselective, affording only one isomer. We demonstrate that our compounds can be electrospun from fluoroalcohol solution into solid, quasi-endless micro- and nanofibers. The electrospinnability varies substantially, depending on the amino acids linked to the scaffold. Some compounds provide only short fibers, while Fmoc-glycyl-(N-benzyl)-pyrazole-isothiazole-tert-butyl carboxylate-1,1-dioxide forms continuous, homogenous, and bead-free fibers (droplet-like beads are a common problem in electrospinning). We analyzed the compounds and the fibers with various spectroscopic techniques (MS, IR and Raman). Electrospinning does not change chemical composition and configuration, suggesting the monomeric form of the compounds even in the fibers. Interestingly, we found that the stereochemistry of the scaffold can affect the ability of the peptide to be electrospun.
Collapse
Affiliation(s)
- Silvia Locarno
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | | | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences Via Marzolo 5 35131 Padua Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Alexander M Bittner
- CIC nanoGUNE Tolosa Hiribidea 76 20018 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Ma Díaz de Haro 3 E-48013 Bilbao Spain
| |
Collapse
|
26
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
27
|
Bucci R, Contini A, Clerici F, Beccalli EM, Formaggio F, Maffucci I, Pellegrino S, Gelmi ML. Fluoro-Aryl Substituted α,β 2,3-Peptides in the Development of Foldameric Antiparallel β-Sheets: A Conformational Study. Front Chem 2019; 7:192. [PMID: 31001518 PMCID: PMC6454073 DOI: 10.3389/fchem.2019.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
α,β2,3-Disteroisomeric foldamers of general formula Boc(S-Ala-β-2R,3R-Fpg)nOMe or Boc(S-Ala-β-2S,3S-Fpg)nOMe were prepared from both enantiomers of syn H-2-(2-F-Phe)-h-PheGly-OH (named β-Fpg) and S-alanine. Our peptides show two appealing features for biomedical applications: the presence of fluorine, attractive for non-covalent interactions, and aryl groups, crucial for π-stacking. A conformational study was performed, using IR, NMR and computational studies of diastereoisomeric tetra- and hexapeptides containing the β2,3-amino acid in the R,R- and S,S-stereochemistry, respectively. We found that the stability of peptide conformation is dependent on the stereochemistry of the β-amino acid. Combining S-Ala with β-2R,3R-Fpg, a stable extended β-strand conformation was obtained. Furthermore, β-2R,3R-Fpg containing hexapeptide self-assembles to form antiparallel β-sheet structure stabilized by intermolecular H-bonds and π,π-interactions. These features make peptides containing the β2,3-fluoro amino acid very appealing for the development of bioactive proteolytically stable foldameric β-sheets as modulators of protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Raffaella Bucci
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Egle Maria Beccalli
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | | | - Irene Maffucci
- CNRS UMR 7025, Génie Enzymatique et Cellulaire, Centre de Recherche de Royallieu, Compiègne, France
- Génie Enzymatique et Cellulaire, Centre de Recherche de Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Milan, Italy
| |
Collapse
|
28
|
Oliva F, Bucci R, Tamborini L, Pieraccini S, Pinto A, Pellegrino S. Bicyclic Pyrrolidine-Isoxazoline γ Amino Acid: A Constrained Scaffold for Stabilizing α-Turn Conformation in Isolated Peptides. Front Chem 2019; 7:133. [PMID: 30937302 PMCID: PMC6431668 DOI: 10.3389/fchem.2019.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Unnatural amino acids have tremendously expanded the folding possibilities of peptides and peptide mimics. While α,α-disubstituted and β-amino acids are widely studied, γ-derivatives have been less exploited. Here we report the conformational study on the bicyclic unnatural γ amino acid, 4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-3-carboxylic acid 1. In model peptides, the (+)-(3aR6aS)-enantiomer is able to stabilize α-turn conformation when associated to glycine, as showed by 1H-NMR, FT-IR, and circular dichroism experiments, and molecular modeling studies. α-turn is a structural motif occurring in many biologically active protein sites, although its stabilization on isolated peptides is quite uncommon. Our results make the unnatural γ-amino acid 1 of particular interest for the development of bioactive peptidomimetics.
Collapse
Affiliation(s)
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Kulkarni K, Habila N, Del Borgo MP, Aguilar MI. Novel Materials From the Supramolecular Self-Assembly of Short Helical β 3-Peptide Foldamers. Front Chem 2019; 7:70. [PMID: 30828574 PMCID: PMC6384263 DOI: 10.3389/fchem.2019.00070] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Self-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials-such as hydrogels-that are tailored for applications in tissue engineering, cell culture and drug delivery. This review provides an overview of self-assembled peptide nanostructures obtained via the supramolecular self-assembly of short β-peptide foldamers with a specific focus on N-acetyl-β3-peptides and their applications as bio- and nanomaterials.
Collapse
Affiliation(s)
| | | | - Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Chinthakindi PK, Benediktsdottir A, Ibrahim A, Wared A, Aurell CJ, Pettersen A, Zamaratski E, Arvidsson PI, Chen Y, Sandström A. Synthesis of Sulfonimidamide-Based Amino Acid Building Blocks with Orthogonal Protecting Groups. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| | - Andrea Benediktsdottir
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| | - Ayah Ibrahim
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| | - Atta Wared
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| | - Carl-Johan Aurell
- Large Scale Chemistry; Early Chemical Development; AstraZeneca; 83 Gothenburg Sweden
| | - Anna Pettersen
- Early Product Development; Pharmaceutical Sciences; IMED Biotech Unit; AstraZeneca; 83 Gothenburg Sweden
| | - Edouard Zamaratski
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| | - Per I. Arvidsson
- Science for Life Laboratory; Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; 171 77 Stockholm Sweden
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; 4000 Durban South Africa
| | - Yantao Chen
- Medicinal Chemistry; Cardiovascular Renal and Metabolism; IMED Biotech Unit; AstraZeneca; 431 83 Gothenburg Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University, Box 574, 75123; Uppsala Sweden
| |
Collapse
|
31
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
32
|
Gracia-Vitoria J, Osante I, Cativiela C, Merino P, Tejero T. Synthesis of Enantiopure Constrained α,β-Cycloaliphatic Cystines via Diels-Alder Reaction with Homochiral Thiazolines. J Org Chem 2018; 83:12471-12485. [PMID: 30176729 DOI: 10.1021/acs.joc.8b01698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The behavior of homochiral 2,3-dihydrothiazoles, easily available from l-cysteine in Diels-Alder reaction with different dienes, "en route" to sterically constrained modified cystines, has been studied. The oxidation level of the sulfur atom of the heterocyclic ring was crucial for the course of the reaction. Whereas 2,3-dihydrothiazoles did not lead to Diels-Alder adducts, 1-oxide and 1,1-dioxide derivatives afforded the exo adduct enantiopurely in high yields and diastereoselectivities. Further elaboration of the resulting adducts provided conformationally restricted quaternary cystines. DFT calculations correctly predict both the reactivity and stereoselectivity observed experimentally.
Collapse
Affiliation(s)
- Jaime Gracia-Vitoria
- Departamento de Química Orgánica , Instituto de Síntesis Química y Catálisis Homogénea ISQCH, CSIC-Universidad de Zaragoza , Zaragoza 50009 , Spain
| | - Iñaki Osante
- Departamento de Química Orgánica , Instituto de Síntesis Química y Catálisis Homogénea ISQCH, CSIC-Universidad de Zaragoza , Zaragoza 50009 , Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica , Instituto de Síntesis Química y Catálisis Homogénea ISQCH, CSIC-Universidad de Zaragoza , Zaragoza 50009 , Spain
| | - Pedro Merino
- Instituto de Biocomputacion y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza , Zaragoza 50009 , Spain
| | - Tomás Tejero
- Departamento de Química Orgánica , Instituto de Síntesis Química y Catálisis Homogénea ISQCH, CSIC-Universidad de Zaragoza , Zaragoza 50009 , Spain
| |
Collapse
|
33
|
Zou H, Li L, Zhang T, Shi M, Zhang N, Huang J, Xian M. Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol Adv 2018; 36:1917-1927. [PMID: 30063950 DOI: 10.1016/j.biotechadv.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
Compared with the better-studied canonical amino acids, the distribution, metabolism and functions of natural non-canonical amino acids remain relatively obscure. Natural non-canonical amino acids have been mainly discovered in plants as secondary metabolites that perform diversified physiological functions. Due to their specific characteristics, a broader range of natural and artificial non-canonical amino acids have recently been applied in the development of functional materials and pharmaceutical products. With the rapid development of advanced methods in biotechnology, non-canonical amino acids can be incorporated into peptides, proteins and enzymes to improve the function and performance relative to their natural counterparts. Therefore, biotechnological application of non-canonical amino acids in artificial bio-macromolecules follows the central goal of synthetic biology to: create novel life forms and functions. However, many of the non-canonical amino acids are synthesized via chemo- or semi-synthetic methods, and few non-canonical amino acids can be synthesized using natural in vivo pathways. Therefore, further research is needed to clarify the metabolic pathways and key enzymes of the non-canonical amino acids. This will lead to the discovery of more candidate non-canonical amino acids, especially for those that are derived from microorganisms and are naturally bio-compatible with chassis strains for in vivo biosynthesis. In this review, we summarize representative natural and artificial non-canonical amino acids, their known information regarding associated metabolic pathways, their characteristics and their practical applications. Moreover, this review summarizes current barriers in developing in vivo pathways for the synthesis of non-canonical amino acids, as well as other considerations, future trends and potential applications of non-canonical amino acids in advanced biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Lei Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
34
|
An R, Gu Z, Sun H, Hu Y, Yan R, Ye D, Liu H. Self-assembly of Fluorescent Dehydroberberine Enhances Mitochondria-Dependent Antitumor Efficacy. Chemistry 2018; 24:9812-9819. [PMID: 29766578 DOI: 10.1002/chem.201801112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/29/2018] [Indexed: 12/13/2022]
Abstract
Selective imaging and inducing mitochondrial dysfunction in tumor cells using mitochondria-targeting probes has become as a promising approach for cancer diagnosis and therapy. Here, we report the design of a fluorescent berberine analog, dehydroberberine (DH-BBR), as a new mitochondria-targeting probe capable of self-assembling into monodisperse organic nanoparticles (DTNPs) upon integration with a lipophilic counter anion, allowing for enhanced fluorescence imaging and treatment of tumors in living mice. X-ray crystallography revealed that the self-assembly process was attributed to a synergy of different molecular interactions, including π-π stacking, O⋅⋅⋅π interaction and electrostatic interaction between DH-BBR and counter anions. We demonstrated that DTNPs could efficiently enter tumor tissue following intravenous injection and enhance mitochondrial delivery of DH-BBR via an electrostatic interaction driven anion exchange process. Selective accumulation in the mitochondria capable of emitting strong fluorescence and causing mitochondrial dysfunction was achieved, enabling efficient inhibition of tumor growth in living mice. This study demonstrates promise for applying lipophilic anions to control molecular self-assembly and tune antitumor activity of mitochondria-targeting probes, which can facilitate to improve cancer treatment in vivo.
Collapse
Affiliation(s)
- Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhanni Gu
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Haifeng Sun
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Runqi Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| |
Collapse
|
35
|
Mushnoori S, Schmidt K, Nanda V, Dutt M. Designing phenylalanine-based hybrid biological materials: controlling morphology via molecular composition. Org Biomol Chem 2018; 16:2499-2507. [PMID: 29565077 DOI: 10.1039/c8ob00130h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Harnessing the self-assembly of peptide sequences has demonstrated great promise in the domain of creating high precision shape-tunable biomaterials. The unique properties of peptides allow for a building block approach to material design. In this study, self-assembly of mixed systems encompassing two peptide sequences with identical hydrophobic regions and distinct polar segments is investigated. The two peptide sequences are diphenylalanine and phenylalanine-asparagine-phenylalanine. The study examines the impact of molecular composition (namely, the total peptide concentration and the relative tripeptide concentration) on the morphology of the self-assembled hybrid biological material. We report a rich polymorphism in the assemblies of these peptides and explain the relationship between the peptide sequence, concentration and the morphology of the supramolecular assembly.
Collapse
Affiliation(s)
- Srinivas Mushnoori
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| | - Kassandra Schmidt
- Department of Biomedical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA and Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Meenakshi Dutt
- Department of Chemical and Biochemical Engineering, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
36
|
Bucci R, Das P, Iannuzzi F, Feligioni M, Gandolfi R, Gelmi ML, Reches M, Pellegrino S. Self-assembly of an amphipathic ααβ-tripeptide into cationic spherical particles for intracellular delivery. Org Biomol Chem 2018; 15:6773-6779. [PMID: 28767120 DOI: 10.1039/c7ob01693j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of molecular carriers able to carry molecules directly into the cell is an area of intensive research. Cationic nanoparticles are effective delivery systems for several classes of molecules, such as anticancer agents, oligonucleotides and antibodies. Indeed, a cationic charge on the outer surface allows a rapid cellular uptake together with the possibility of carrying negatively charged molecules. In this work, we studied the self-assembly of an ultra-short ααβ-tripeptide containing an l-Arg-l-Ala sequence and an unnatural fluorine substituted β2,3-diaryl-amino acid. The presence of the unnatural β2,3-diaryl-amino acid allowed us to obtain a protease stable sequence. Furthermore, an arginine guanidinium group triggered the formation of spherical assemblies that were able to load small molecules and enter cells. These spherical architectures, thus, represent interesting candidates for the delivery of exogenous entities directly into cells.
Collapse
Affiliation(s)
- Raffaella Bucci
- University of Milano, Department of Pharmaceutical Sciences, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Goel R, Garg C, Gautam HK, Sharma AK, Kumar P, Gupta A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int J Biol Macromol 2018; 111:880-893. [PMID: 29355630 DOI: 10.1016/j.ijbiomac.2018.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
The present article describes designing and fabrication of nanostructures from a mixed α/β-pentapeptide, Lys-βAla-βAla-Lys-βAla, which majorly contains non-natural β-alanine residues in the backbone with two α-lysine residues at 1- and 4-positions. The amphiphilic pentapeptide showed the ability to self-assemble into cationic nanovesicles in an aqueous solution. The average size of peptide nanostructures was found to be ~270 nm with a very high cationic charge of ~+40 mV. TEM micrographs revealed the average size of the same nanostructures ~80 nm bearing vesicular morphology. CD and FTIR spectroscopic studies on self-assembled pentapeptide hinted at random coil conformation which was also correlated with conformational search program using Hyper Chem 8.0. The pentapeptide nanostructures were then tested for encapsulation of hydrophobic model drug moieties, L-Dopa, and curcumin. Transfection efficiency of the generated cationic nanostructures was evaluated on HEK293 cells and compared the results with those obtained in the presence of chloroquine. The cytotoxicity assay performed using MTT depicted ~75-80% cell viability. The obtained nanostructures also gave positive results against both Gram-negative and Gram-positive bacterial strains. Altogether the results advocate the promising potential of the pentapeptide foldamer, H-Lys-βAla-βAla-Lys-βAla-OEt, for drug and gene delivery applications along with the antimicrobial activity.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India
| | - Charu Garg
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India; Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Hemant Kumar Gautam
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Alka Gupta
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
38
|
Pipitone LM, Carboni G, Sorrentino D, Galeotti M, Salamone M, Bietti M. Enhancing Reactivity and Site-Selectivity in Hydrogen Atom Transfer from Amino Acid C–H Bonds via Deprotonation. Org Lett 2018; 20:808-811. [DOI: 10.1021/acs.orglett.7b03948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luca Maria Pipitone
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Giulia Carboni
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Daniela Sorrentino
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e
Tecnologie Chimiche, Università “Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| |
Collapse
|
39
|
Diller KI, Bayden AS, Audie J, Diller DJ. PeptideNavigator: An interactive tool for exploring large and complex data sets generated during peptide-based drug design projects. Comput Biol Med 2017; 92:176-187. [PMID: 29207334 DOI: 10.1016/j.compbiomed.2017.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023]
Abstract
There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects.
Collapse
Affiliation(s)
- Kyle I Diller
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States
| | - Alexander S Bayden
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States; IDEAYA Biosciences Inc., 7000 Shoreline Court, Suite 350, South San Francisco, CA 94080, United States
| | - Joseph Audie
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States; Chemistry Department, Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, United States
| | - David J Diller
- CMDBioscience Inc., 5 Science Park, New Haven, CT 06511, United States.
| |
Collapse
|