1
|
Yan H, Chen F. Recent Progress in Solid‐Phase Total Synthesis of Naturally Occurring Small Peptides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
2
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
3
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Darcel L, Bornancin L, Raviglione D, Bonnard I, Mills SC, Sáez-Vásquez J, Banaigs B, Inguimbert N. d-Peptidase Activity in a Marine Mollusk Detoxifies a Nonribosomal Cyclic Lipopeptide: An Ecological Model to Study Antibiotic Resistance. J Med Chem 2021; 64:6198-6208. [PMID: 33914531 DOI: 10.1021/acs.jmedchem.1c00249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the marine environment, sessile cyanobacteria have developed chemical strategies for protection against grazers. In turn, herbivores have to circumvent these defenses and in certain cases even take advantage of them as shelter from their own predators. This is the case of Stylocheilus striatus, a sea hare that feeds on Anabaena torulosa, a cyanobacterium that produces toxic cyclic lipopeptides of the laxaphycin B family. S. striatus consumes the cyanobacterium without being affected by the toxicity of its compounds and also uses it as an invisibility cloak against predators. In this article, using different substrates analogous to laxaphycin B, we demonstrate the presence of an enzyme in the digestive gland of the mollusk that is able to biotransform laxaphycin B derivatives. The enzyme belongs to the poorly known family of d-peptidases that are suspected to be involved in antibiotic resistance.
Collapse
Affiliation(s)
- Laurine Darcel
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Louis Bornancin
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Delphine Raviglione
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Isabelle Bonnard
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Suzanne C Mills
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, BP 1013, Papetoai, Moorea 98729, French Polynesia.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Julio Sáez-Vásquez
- LGDP, UMR CNRS 5096, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Bernard Banaigs
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| | - Nicolas Inguimbert
- CRIOBE, USR EPHE-UPVD-CNRS 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, Perpignan 66860, France.,Laboratoire d'Excellence "CORAIL", 58 Avenue Paul Alduy, Perpignan 66860, France
| |
Collapse
|
5
|
Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020; 25:molecules25245804. [PMID: 33316949 PMCID: PMC7763478 DOI: 10.3390/molecules25245804] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacteria and microalgae are oxygen-producing photosynthetic unicellular organisms encompassing a great diversity of species, which are able to grow under all types of extreme environments and exposed to a wide variety of predators and microbial pathogens. The antibacterial compounds described for these organisms include alkaloids, fatty acids, indoles, macrolides, peptides, phenols, pigments and terpenes, among others. This review presents an overview of antibacterial peptides isolated from cyanobacteria and microalgae, as well as their synergism and mechanisms of action described so far. Antibacterial cyanopeptides belong to different orders, but mainly from Oscillatoriales and Nostocales. Cyanopeptides have different structures but are mainly cyclic peptides. This vast peptide repertoire includes ribosomal and abundant non-ribosomal peptides, evaluated by standard conventional methodologies against pathogenic Gram-negative and Gram-positive bacteria. The antibacterial activity described for microalgal peptides is considerably scarcer, and limited to protein hydrolysates from two Chlorella species, and few peptides from Tetraselmis suecica. Despite the promising applications of antibacterial peptides and the importance of searching for new natural sources of antibiotics, limitations still persist for their pharmaceutical applications.
Collapse
|
6
|
Darcel L, Djibo M, Gaillard M, Raviglione D, Bonnard I, Banaigs B, Inguimbert N. Trichormamide C Structural Confirmation through Total Synthesis and Extension to Analogs. Org Lett 2019; 22:145-149. [DOI: 10.1021/acs.orglett.9b04064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurine Darcel
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Mahamadou Djibo
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Michel Gaillard
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Delphine Raviglione
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Isabelle Bonnard
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Bernard Banaigs
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Nicolas Inguimbert
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
7
|
Structure and biological evaluation of new cyclic and acyclic laxaphycin-A type peptides. Bioorg Med Chem 2019; 27:1966-1980. [DOI: 10.1016/j.bmc.2019.03.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/28/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
|