1
|
Liman R, Kursunlu AN, Ozmen M, Arslan S, Mutlu D, Istifli ES, Acikbas Y. Synthesis of water soluble symmetric and asymmetric pillar[5]arene derivatives: Cytotoxicity, apoptosis and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
2
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2021; 14:pharmaceutics14010060. [PMID: 35056956 PMCID: PMC8777861 DOI: 10.3390/pharmaceutics14010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
The formation of inclusion complexes between alkylsulfonate guests and a cationic pillar[5]arene receptor in water was investigated by NMR and ITC techniques. The results show the formation of host-guest complexes stabilized by electrostatic interactions and hydrophobic effects with binding constants of up to 107 M−1 for the guest with higher hydrophobic character. Structurally, the alkyl chain of the guest is included in the hydrophobic aromatic cavity of the macrocycle while the sulfonate groups are held in the multicationic portal by ionic interactions.
Collapse
|
4
|
Shi C, Li H, Shi X, Zhao L, Qiu H. Chiral pillar[n]arenes: Conformation inversion, material preparation and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Shurpik DN, Aleksandrova YI, Mostovaya OA, Nazmutdinova VA, Zelenikhin PV, Subakaeva EV, Mukhametzyanov TA, Cragg PJ, Stoikov II. Water-soluble pillar[5]arene sulfo-derivatives self-assemble into biocompatible nanosystems to stabilize therapeutic proteins. Bioorg Chem 2021; 117:105415. [PMID: 34673453 DOI: 10.1016/j.bioorg.2021.105415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pillar[5]arenes containing sulfonate fragments have been shown to form supramolecular complexes with therapeutic proteins to facilitate targeted transport with an increased duration of action and enhanced bioavailability. Regioselective synthesis was used to obtain a water-soluble pillar[5]arene containing the fluorescent label FITC and nine sulfoethoxy fragments. The pillar[5]arene formed complexes with the therapeutic proteins binase, bleomycin, and lysozyme in a 1:2 ratio as demonstrated by UV-vis and fluorescence spectroscopy. The formation of stable spherical nanosized macrocycle/binase complexes with an average particle size of 200 nm was established by dynamic light scattering and transmission electron microscopy. Flow cytometry demonstrated the ability of macrocycle/binase complexes to penetrate into tumor cells where they exhibited significant cytotoxicity towards A549 cells at 10-5-10-6 M while maintaining the enzymatic activity of binase.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Olga A Mostovaya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Viktoriya A Nazmutdinova
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Timur A Mukhametzyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Applied Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
6
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine. Int J Mol Sci 2021; 22:ijms22157950. [PMID: 34360730 PMCID: PMC8348429 DOI: 10.3390/ijms22157950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, meroterpenoids have found wide biomedical application due to their synthetic availability, low toxicity, and biocompatibility. However, these compounds are not used in targeted drug delivery systems due to their high affinity for cell membranes, both healthy and in cancer cells. Using the approach of creating supramolecular amphiphiles, we have developed self-assembling systems based on water-soluble pillar[5]arene and synthetic meroterpenoids containing geraniol, myrtenol, farnesol, and phytol fragments. The resulting systems can be used as universal drug delivery systems. It was shown by turbidimetry that the obtained pillar[5]arene/synthetic meroterpenoid systems do not interact with the model cell membrane at pH = 7.4, but the associates are destroyed at pH = 4.1. In this case, the synthetic meroterpenoid is incorporated into the lipid bilayer of the model membrane. The characteristics of supramolecular self-assembly, association constants and stoichiometry of the most stable pillar[5]arene/synthetic meroterpenoid complexes were established by UV-vis spectroscopy and dynamic light scattering (DLS). It was shown that supramolecular amphiphiles based on pillar[5]arene/synthetic meroterpenoid systems form monodisperse associates in a wide range of concentrations. The inclusion of the antitumor drug 5-fluoro-2'-deoxyuridine (floxuridine) into the structure of the supramolecular associate was demonstrated by DLS, 19F, 2D DOSY NMR spectroscopy.
Collapse
|
8
|
Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:947. [PMID: 33917874 PMCID: PMC8068209 DOI: 10.3390/nano11040947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures-pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Lyaysan I. Makhmutova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Konstantin S. Usachev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia;
| | - Daut R. Islamov
- FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Institute of Organic and Physical Chemistry, Arbuzov St., 8, 420088 Kazan, Russia;
| | - Olga A. Mostovaya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Anastasia A. Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| | - Valeriy N. Kizhnyaev
- Department of Theoretical and Applied Organic Chemistry and Polymerization Processes, Irkutsk State University, K. Marksa, 1, 664003 Irkutsk, Russia;
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (D.N.S.); (L.I.M.); (O.A.M.); (A.A.N.)
| |
Collapse
|
9
|
Shurpik DN, Aleksandrova YI, Rodionov AA, Razina EA, Gafurov MR, Vakhitov IR, Evtugyn VG, Gerasimov AV, Kuzin YI, Evtugyn GA, Cragg PJ, Stoikov II. Metallo-Supramolecular Coordination Polymers Based on Amidopyridine Derivatives of Pillar[5]arene and Cu(II) and Pd(II) Cations: Synthesis and Recognition of Nitroaromatic Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2942-2953. [PMID: 33630597 DOI: 10.1021/acs.langmuir.0c03579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with p-amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yulia I Aleksandrova
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Alexander A Rodionov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Elena A Razina
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Marat R Gafurov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Iskander R Vakhitov
- Institute of Physics, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russia
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Alexander V Gerasimov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Yurii I Kuzin
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Gennady A Evtugyn
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, United Kingdom
| | - Ivan I Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, 420008 Kremlevskaya Street, 18, Kazan, Russian Federation
| |
Collapse
|
10
|
Shurpik DN, Akhmedov AA, Cragg PJ, Plemenkov VV, Stoikov II. Progress in the Chemistry of Macrocyclic Meroterpenoids. PLANTS 2020; 9:plants9111582. [PMID: 33203180 PMCID: PMC7696033 DOI: 10.3390/plants9111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/26/2023]
Abstract
In the last decade, the chemistry of meroterpenoids—conjugated molecules formed from isoprenyl fragments through biosynthetic pathways—has developed rapidly. The class includes some natural metabolites and fully synthetic fragments formed through nonbiological synthesis. In the field of synthetic receptors, a range of structures can be achieved by combining fragments of different classes of organic compounds into one hybrid macrocyclic platform which retains the properties of these fragments. This review discusses the successes in the synthesis and practical application of both natural and synthetic macrocycles. Among the natural macrocyclic meroterpenoids, special attention is paid to isoprenylated flavonoids and phenols, isoprenoid lipids, prenylated amino acids and alkaloids, and isoprenylpolyketides. Among the synthetic macrocyclic meroterpenoids obtained by combining the “classical” macrocyclic platforms, those based on cyclodextrins, together with meta- and paracyclophanes incorporating terpenoid fragments, and meroterpenoids obtained by macrocyclization of several terpene derivatives are considered. In addition, issues related to biomedical activity, processes of self-association and aggregation, and the formation of host–guest complexes of various classes of macrocyclic merotenoids are discussed in detail.
Collapse
Affiliation(s)
- Dmitriy N. Shurpik
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Alan A. Akhmedov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb Brighton, East Sussex BN2 4GJ, UK;
| | - Vitaliy V. Plemenkov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
| | - Ivan I. Stoikov
- A.M. Butlerov Chemical Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (D.N.S.); (A.A.A.); (V.V.P.)
- Correspondence: ; Tel.: +7-8432-337463
| |
Collapse
|
11
|
Nazarova A, Shurpik D, Padnya P, Mukhametzyanov T, Cragg P, Stoikov I. Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar[5]arenes. Int J Mol Sci 2020; 21:E7206. [PMID: 33003555 PMCID: PMC7582551 DOI: 10.3390/ijms21197206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Novel water-soluble multifunctional pillar[5]arenes containing amide-ammonium-amino acid moiety were synthesized. The compounds demonstrated a superior ability to bind (1S)-(+)-10-camphorsulfonic acid (S-CSA) and methyl orange dye depending on the nature of the substituent, resulting in the formation one-to-one complexes with both guests. The formation of host-guest complexes was confirmed by ultraviolet (UV), circular dichroism (CD) and 1H NMR spectroscopy. This work demonstrates the first case of using S-CSA as a chiral template for the non-covalent self-assembly of architectures based on pillar[5]arenes. It was shown that pillar[5]arenes with glycine or L-alanine fragments formed aggregates with average hydrodynamic diameters (d) of 165 and 238 nm, respectively. It was established that the addition of S-CSA to the L-alanine-containing derivative led to the formation of micron-sized aggregates with d of 713 nm. This study may advance the design novel stereoselective catalysts and transmembrane amino acid channels.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Dmitriy Shurpik
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Pavel Padnya
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Timur Mukhametzyanov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| | - Peter Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK;
| | - Ivan Stoikov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, 420008 Kazan, Russia; (A.N.); (D.S.); (P.P.); (T.M.)
| |
Collapse
|
12
|
Shurpik DN, Aleksandrova YI, Zelenikhin PV, Subakaeva EV, Cragg PJ, Stoikov II. Towards new nanoporous biomaterials: self-assembly of sulfopillar[5]arenes with vitamin D 3 into supramolecular polymers. Org Biomol Chem 2020; 18:4210-4216. [PMID: 32250381 DOI: 10.1039/d0ob00411a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel water-soluble, deca-substituted pillar[5]arenes containing thiasulfate and thiacarboxylate fragments were synthesized and characterized. UV-vis, 2D 1H-1H NOESY and DOSY NMR spectroscopy revealed the ability of pillar[5]arenes containing thiasulfate fragments to form an inclusion complex with cholecalciferol (vitamin D3) in a 1 : 2 ratio (lg Kass = 2.2). Using DLS and SEM it was found that upon concentration and/or evaporation of the solvent, the supramolecular polymer (pillar[5]arene/vitamin D3 (1 : 2)) forms a porous material with an average wall diameter of 53 nm. It was shown that the supramolecular polymer is stable during photolysis by UV radiation (k1 = 1.7 × 10-5 s-1).
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Yulia I Aleksandrova
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Evgenia V Subakaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| |
Collapse
|
13
|
Evtyugin GA, Shurpik DN, Stoikov II. Electrochemical sensors and biosensors on the pillar[5]arene platform. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2843-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Wang Q, Bian X, Chen X, Han Y, Yan C. Mechanism and structure of the interaction of water-soluble pillar[5]arene and ibrutinib that enhances the anticancer activity of ibrutinib. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Uncharged water-soluble amide derivatives of pillar[5]arene: synthesis and supramolecular self-assembly with tetrazole-containing polymers. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Shurpik DN, Sevastyanov DA, Zelenikhin PV, Padnya PL, Evtugyn VG, Osin YN, Stoikov II. Nanoparticles based on the zwitterionic pillar[5]arene and Ag +: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:421-431. [PMID: 32215229 PMCID: PMC7082700 DOI: 10.3762/bjnano.11.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
For the first time, stable pillar[5]arene/Ag+ nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag+ ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag+ (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag+ ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag+ (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag+ ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Denis A Sevastyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel L Padnya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Yuriy N Osin
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
17
|
Mekapothula S, Addicoat MA, Boocock DJ, Wallis JD, Cragg PJ, Cave GWV. Silica bound co-pillar[4+1]arene as a novel supramolecular stationary phase. Chem Commun (Camb) 2020; 56:1792-1794. [PMID: 31942912 DOI: 10.1039/c9cc09656f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel co-pillar[4+1]arene incorporating two bromo-octyl substituents has been synthesised for the first time, using microwave irradiation in high yield (88%) in under four minutes, and bound to the surface of chromatographic silica particles. The resulting new stationary phase has been successfully utilised to separate xylene isomers via liquid chromatographic techniques.
Collapse
Affiliation(s)
- Subbareddy Mekapothula
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Matthew A Addicoat
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - David J Boocock
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - John D Wallis
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton BN2 4GJ, UK
| | - Gareth W V Cave
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
18
|
Wei TB, Qi LH, Zhang QP, Zhang WH, Yao H, Zhang YM, Lin Q. Stimuli-responsive supramolecular polymer network based on bi-pillar[5]arene for efficient adsorption of multiple organic dye contaminants. NEW J CHEM 2020. [DOI: 10.1039/d0nj02524k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular polymer network gel has been successfully prepared via bi-pillar[5]arene and a tripodal guest, exhibiting multi-stimuli-responsiveness and efficient adsorption of organic dyes.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Li-Hua Qi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qin-Peng Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Wen-Huan Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education
- Key Laboratory of Eco-environmental Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
| |
Collapse
|
19
|
Shurpik DN, Mostovaya OA, Sevastyanov DA, Lenina OA, Sapunova AS, Voloshina AD, Petrov KA, Kovyazina IV, Cragg PJ, Stoikov II. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org Biomol Chem 2019; 17:9951-9959. [PMID: 31729508 DOI: 10.1039/c9ob02215e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A water-soluble pillar[5]arene, decafunctionalized with thioether and carboxylate fragments, was synthesized as a structural analogue of Sugammadex. Its ability to restore the contraction of the diaphragm muscle by encapsulating the muscle relaxant rocuronium bromide was demonstrated. Using UV-vis, NMR and fluorescence spectroscopy, it was shown that the muscle relaxant is associated with the pillar[5]arene with an association constant of 4500 M-1 and a stoichiometry of 1 : 1. The structure of the inclusion complex of the pillar[5]arene with rocuronium bromide was additionally investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemical Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nazarova AA, Yakimova LS, Padnya PL, Evtugyn VG, Osin YN, Cragg PJ, Stoikov II. Monosubstituted pillar[5]arene functionalized with (amino)phosphonate fragments are “smart” building blocks for constructing nanosized structures with some s- and p-metal cations in the organic phase. NEW J CHEM 2019. [DOI: 10.1039/c9nj03539g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pillar[5]arenes with phosphonate- and 1-aminophosphonate-substituents form complexes with Na+, K+, Cs+ and Pb2+ with a 1 : 1 stoichiometry and lg Ka values between 2.0 and 4.8, and that Pb2+ is the most effectively bound cation.
Collapse
Affiliation(s)
| | - Luidmila S. Yakimova
- A. M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - Pavel L. Padnya
- A. M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| | - Vladimir G. Evtugyn
- Interdisciplinary Center for Analytical Microscopy
- Kazan Federal University
- Kazan
- Russian Federation
| | - Yuri N. Osin
- Interdisciplinary Center for Analytical Microscopy
- Kazan Federal University
- Kazan
- Russian Federation
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| | - Ivan I. Stoikov
- A. M. Butlerov Chemical Institute
- Kazan Federal University
- Kazan
- Russian Federation
| |
Collapse
|