1
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
2
|
Lin C, Luan F, Su S, Jiang A, Tan W, Guo Z. Water-soluble fluorine-functionalized chitooligosaccharide derivatives: Synthesis, characterization and antimicrobial activity. Carbohydr Res 2023; 533:108935. [PMID: 37717482 DOI: 10.1016/j.carres.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
In this work, a series of water-soluble fluorine-functionalized chitooligosaccharide derivatives were synthesized by conjugating nicotinic acid to chitooligosaccharide via nicotinylation reaction, followed by nucleophilic reaction with ethyl bromide, benzyl bromide and fluorobenzyl bromides. Synthesized derivatives were identified structurally by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. In addition, the antibacterial activities of chitooligosaccharide derivatives against several disease-causing bacteria were assessed by the broth dilution method and Kirby-Bauer method, the mycelium growth rate method was used to assessing the antifungal properties of samples against three plant-threatening fungi. Among the chitooligosaccharide derivatives, those containing benzyl or fluorobenzyl exhibited noteworthy antimicrobial activity. Specifically, the chitooligosaccharide derivative containing 2,3,4-trifluorobenzyl displayed remarkable antimicrobial activity, with an inhibition index of 84.35% against Botryis cinerea at a concentration of 1.0 mg/mL. Additionally, its MIC value against Staphylococcus aureus was found to be 0.03125 mg/mL, while the MBC value was determined to be 0.0625 mg/mL. The findings of the study revealed that the incorporation of pyridinium cations and fluorine into the chitooligosaccharide backbone may play a critical role in strengthening its ability to combat harmful microorganisms. Furthermore, the cytotoxicities of chitooligosaccharide derivatives against Huvec cells were evaluated through MTT assay, and all samples were not toxic. As a consequence, the water-soluble fluorine-functionalized chitooligosaccharide derivatives possessed rapid microbicidal properties and good biocompatibility, which provided promising prospects for the development of a more effective and environmentally friendly antimicrobial agent.
Collapse
Affiliation(s)
- Conghao Lin
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai, 264200, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying, 257300, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Wenqiang Tan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Zhanyong Guo
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
3
|
Lin C, Guo Z, Jiang A, Liang X, Tan W. Cationic Chitooligosaccharide Derivatives Bearing Pyridinium and Trialkyl Ammonium: Preparation, Characterization and Antimicrobial Activities. Polymers (Basel) 2022; 15:polym15010014. [PMID: 36616363 PMCID: PMC9824205 DOI: 10.3390/polym15010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, chitooligosaccharide-niacin acid conjugate was designed and synthesized through the reaction of chitooligosaccharide and nicotinic acid with the aid of N,N'-carbonyldiimidazole. Its cationic derivatives were prepared by the further nucleophilic substitution reaction between the chitooligosaccharide-niacin acid conjugate and bromopropyl trialkyl ammonium bromide with different alkyl chain lengths. The specific structural characterization of all derivatives was identified using Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR), and the degree of substitution was obtained using the integral area ratio of the hydrogen signals. Specifically, the antibacterial activities against Escherichia coli, Staphylococcus aureus, Pseudoalteromonas citrea and Vibrio harveyi were evaluated using broth dilution methods. In addition, their antifungal activities, including Botrytis cinerea, Glomerella cingulate and Fusarium oxysporum f. sp. cubense were assayed in vitro using the mycelium growth rate method. Experimental data proved that the samples showed antibacterial activity against four pathogenic bacteria (MIC = 1-0.125 mg/mL, MBC = 8-0.5 mg/mL) and enhanced antifungal activity (50.30-68.48% at 1.0 mg/mL) against Botrytis cinerea. In particular, of all chitooligosaccharide derivatives, the chitooligosaccharide derivative containing pyridinium and tri-n-butylamine showed the strongest antibacterial capacity against all of the test pathogenic bacteria; the MIC against Vibrio harveyi was 0.125 mg/mL and the MBC was 1 mg/mL. The experimental results above showed that the introduction of pyridinium salt and quaternary ammonium salt bearing trialkyl enhanced the antimicrobial activity. In addition, the cytotoxicity against L929 cells of the chitooligosaccharide derivatives was evaluated, and the compounds exhibited slight cytotoxicity. Specifically, the cell viability was greater than 91.80% at all test concentrations. The results suggested that the cationic chitooligosaccharide derivatives bearing pyridinium and trialkyl ammonium possessed better antimicrobial activity than pure chitooligosaccharide, indicating their potential as antimicrobial agents in food, medicine, cosmetics and other fields.
Collapse
Affiliation(s)
- Conghao Lin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zhanyong Guo
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Correspondence: (Z.G.); (W.T.); Tel.: +86-535-2109165 (Z.G.); +86-535-2109171 (W.T.); Fax: +86-535-2109000 (Z.G. & W.T.)
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China
| | - Wenqiang Tan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Correspondence: (Z.G.); (W.T.); Tel.: +86-535-2109165 (Z.G.); +86-535-2109171 (W.T.); Fax: +86-535-2109000 (Z.G. & W.T.)
| |
Collapse
|
4
|
Sun XT, Hu ZG, Huang Z, Zhou LL, Weng JQ. A Novel PIFA/KOH Promoted Approach to Synthesize C2-arylacylated Benzothiazoles as Potential Drug Scaffolds. Molecules 2022; 27:726. [PMID: 35163992 PMCID: PMC8838045 DOI: 10.3390/molecules27030726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
To discover an efficient and convenient method to synthesize C2-arylacylated benzothiazoles as potential drug scaffolds, a novel [bis(trifluoroacetoxy)iodo]benzene(PIFA)/KOH synergistically promoted direct ring-opening C2-arylacylation reaction of 2H-benzothiazoles with aryl methyl ketones has been developed. Various substrates were tolerated under optimized conditions affording the C2-arylacylation products in 70-95% yields for 38 examples. A plausible mechanism was also proposed based on a series of controlled experiments.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China; (X.-T.S.); (Z.-G.H.); (Z.H.); (L.-L.Z.)
| |
Collapse
|
5
|
Maryška M, Svobodová L, Dehaen W, Hrabinová M, Rumlová M, Soukup O, Kuchař M. Heterocyclic Cathinones as Inhibitors of Kynurenine Aminotransferase II-Design, Synthesis, and Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14121291. [PMID: 34959692 PMCID: PMC8708382 DOI: 10.3390/ph14121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.
Collapse
Affiliation(s)
- Michal Maryška
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Lucie Svobodová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
| | - Wim Dehaen
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Martina Hrabinová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ondřej Soukup
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Kralové, Czech Republic; (M.H.); (O.S.)
- Department of Toxicology and Military Pharmacy, University of Defense, Třebešská 1575, 50005 Hradec Králové, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (M.M.); (L.S.)
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
- Correspondence: ; Tel.: +420-220-444-431
| |
Collapse
|
6
|
|
7
|
Zhu X, Zhou F, Yang Y, Deng G, Liang Y. Catalyst- and Additive-Free Method for the Synthesis of 2-Substituted Benzothiazoles from Aromatic Amines, Aliphatic Amines, and Elemental Sulfur. ACS OMEGA 2020; 5:13136-13147. [PMID: 32548500 PMCID: PMC7288589 DOI: 10.1021/acsomega.0c01150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Under catalyst- and additive-free conditions, a novel, convenient, environmentally friendly method was developed for the synthesis of 2-substituted benzothiazoles via the three-component one pot reaction from aromatic amines, aliphatic amines, and elemental sulfur. The reaction achieves double C-S and one C-N bond formations via cleavage of two C-N bonds and multiple C-H bonds. Furthermore, the mechanism research shows that DMSO acts as an oxidant in the cyclization reaction.
Collapse
Affiliation(s)
- Xiaoming Zhu
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- Key
Laboratory of Functional Metal-Organic Compounds of Hunan Province,
Hunan Province Universities Key Laboratory of Functional Organometallic
Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Fengru Zhou
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National
and Local Joint Engineering Laboratory for New Petro-chemical Materials
and Fine Utilization of Resources, Key Laboratory of Chemical Biology
and Traditional Chinese Medicine Research, Ministry of Education,
Key Laboratory of the Assembly and Application of Organic Functional
Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|