1
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
2
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Sahoo S, Manna S, Rit A. Unravelling a bench-stable zinc-amide compound as highly active multitasking catalyst for radical-mediated selective alk(en)ylation of unactivated carbocycles under mild conditions. Chem Sci 2024; 15:5238-5247. [PMID: 38577381 PMCID: PMC10988604 DOI: 10.1039/d3sc06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
The direct functionalization of unactivated organic moieties via C-C bond formation has long fascinated synthetic chemists. Although base-metal systems are steadily emerging in this area, achieving multitasking activity in a single catalyst to execute several such functionalizations under mild conditions is challenging. To address this, we herein report an effective protocol for the selective C-alk(en)ylation of indene/fluorene with alcohol as a green alkylating agent employing a naturally abundant and eco-friendly zinc-derived compound, for the first time. Notably, this study unveils the unique potential of a bench-stable Zn compound bearing an amidated imidazolium salt towards C-C bond-forming reactions utilizing an array of alcohols, ranging from aliphatic to aromatic and, attractively, even secondary alcohols. Moreover, this readily scalable protocol, which proceeds via an underdeveloped radical-mediated borrowing hydrogen protocol (an aldehyde is generated from an alcohol, and subsequent condensation with indene/fluorene provides the corresponding alkenylated products) established based on a range of control experiments, works effortlessly under mild conditions using a low catalyst loading. Notably, this approach affords remarkable selectivity towards alkylated or alkenylated products with a high level of functional group tolerance and chemoselectivity. Crucially, the catalytic activity of these Zn compounds can be attributed to their hydrogen atom transfer (HAT) capability, while their selectivity towards different products can be understood in terms of employed reaction conditions. Lastly, the synthetic utility of obtained products was showcased by their late-stage functionalization to access unsymmetrical 9,9-disubstituted fluorenes, which are potentially useful for various optoelectronic applications.
Collapse
Affiliation(s)
- Sangita Sahoo
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Subarna Manna
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
4
|
Pazur EJ, Tasker NR, Wipf P. C3-Functionalization of indoles with α-heteroaryl-substituted methyl alcohols. Org Biomol Chem 2023; 21:8651-8657. [PMID: 37873703 DOI: 10.1039/d3ob01432k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The transition metal-free Cs2CO3/Oxone®-mediated C3-alkylation of indoles proceeds in moderate to high yields with a variety of C4-C7 functionalized indoles and is applicable to 2-, 3- and 4-hydroxymethyl pyridines and related electron-deficient heterocycles, permitting novel late-stage drug functionalizations. Preliminary mechanistic studies support a hydrogen autotransfer-type chain process starting with an initial oxidation of the alcohol to the corresponding aldehyde, followed by a subsequent condensation onto indole and reduction/hydride delivery from another equivalent of the primary alcohol.
Collapse
Affiliation(s)
- Ethan J Pazur
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
6
|
Tuck JR, Dunlap LE, Olson DE. Synthetic Strategies toward Lysergic Acid Diethylamide: Ergoline Synthesis via α-Arylation, Borrowing Hydrogen Alkylation, and C-H Insertion. J Org Chem 2023; 88:13712-13719. [PMID: 37697477 PMCID: PMC10591856 DOI: 10.1021/acs.joc.3c01363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Lysergic acid diethylamide (LSD), a semisynthetic ergoline alkaloid analogue and hallucinogen, is a potent psychoplastogen with promising therapeutic potential. While a variety of synthetic strategies for accessing ergoline alkaloids have emerged, the complexity of the tetracyclic ring system results in distinct challenges in preparing analogues with novel substitution patterns. Methods of modulating the hallucinogenic activity of LSD by functionalization at previously inaccessible positions are of continued interest, and efficient syntheses of the ergoline scaffold are integral toward this purpose. Here, we report novel C-C bond forming strategies for preparing the ergoline tetracyclic core, focusing on the relatively unexplored strategy of bridging the B- and D-ring systems last. Following cross-coupling to first join the A- and D-rings, we explored a variety of methods for establishing the C-ring, including intramolecular α-arylation, borrowing hydrogen alkylation, and rhodium-catalyzed C-H insertion. Our results led to a seven-step formal synthesis of LSD and the first methods for readily introducing substitution on the C-ring. These strategies are efficient for forming ergoline-like tetracyclic compounds and analogues, though they each face unique challenges associated with elaboration to ergoline natural products. Taken together, these studies provide important insights that will guide future synthetic strategies toward ergolines.
Collapse
Affiliation(s)
- Jeremy R. Tuck
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - Lee E. Dunlap
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
| | - David E. Olson
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616, USA
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
7
|
Izquierdo-Aranda L, Adam R, Cabrero-Antonino JR. Silver Supported Nanoparticles on [Mg 4 Al-LDH] as an Efficient Catalyst for the α-Alkylation of Nitriles, Oxindoles and Other Carboxylic Acid Derivatives with Alcohols. CHEMSUSCHEM 2023:e202300818. [PMID: 37486295 DOI: 10.1002/cssc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
An efficient heterogeneous silver-catalyzed α-alkylation of nitriles and oxindoles using alcohols via borrowing hydrogen strategy has been developed for the first time. The active nanostructured material, namely [Ag/Mg4 Al-LDH], composed by silver nanoparticles (3-4 nm average particle size) homogeneously stabilized onto a [Mg4 Al-LDH] support with suitable Brønsted basic properties, constitutes a stable catalyst for the sustainable building of novel C-C bonds from alcohols and C-nucleophiles. By applying this catalyst, a broad range of α-functionalized nitriles and oxindoles has been accessed with good to excellent isolated yields and without the addition of external bases. Moreover, the novel silver nanocatalyst has also demonstrated its successful application to the cyclization of N-[2-(hydroxymethyl)phenyl]-2-phenylacetamides to afford 3-arylquinolin-2(1H)-ones, through a one-pot dehydrogenation and intramolecular α-alkylation. Control experiments, kinetic studies, and characterization data of a variety of [Ag/LDH]-type materials confirmed the silver role in the dehydrogenation and hydrogenation steps, while [Mg4 Al-LDH] matrix is able to catalyze condensation. Interestingly, these studies suggest as key point for the successful activity of [Ag/Mg4 Al-LDH], in comparison with other [Ag/LDH]-type nanocatalysts, the suitable acid-base properties of this material.
Collapse
Affiliation(s)
- Luis Izquierdo-Aranda
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| | - Rosa Adam
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Jose R Cabrero-Antonino
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022, València, Spain
| |
Collapse
|
8
|
Bartolucci S, Retini M, Fanini F, Paderni D, Piersanti G. Synthesis and Fluorescence Properties of 4-Cyano and 4-Formyl Melatonin as Putative Melatoninergic Ligands. ACS OMEGA 2023; 8:22190-22194. [PMID: 37360469 PMCID: PMC10286092 DOI: 10.1021/acsomega.3c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Fluorescent ligands are imperative to many facets of chemical biology and medicinal chemistry. Herein, we report the syntheses of two fluorescent melatonin-based derivatives as potential ligands of melatonin receptors. The two compounds, namely, 4-cyano and 4-formyl melatonin (4CN-MLT and 4CHO-MLT, respectively), which differ from melatonin by only two/three atoms that are very compact in size, were prepared using the selective C3-alkylation of indoles with N-acetyl ethanolamines involving the "borrowing hydrogen" strategy. These compounds exhibit absorption/emission spectra that are red-shifted from those of melatonin. Binding studies on two melatonin receptor subtypes showed that these derivatives have a modest affinity and selectivity ratio.
Collapse
Affiliation(s)
- Silvia Bartolucci
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Michele Retini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Fabiola Fanini
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Daniele Paderni
- Department
of Pure and Applied Sciences, University
of Urbino Carlo Bo, Via della Stazione 4, 61029 Urbino, Pesaro and Urbino, Italy
| | - Giovanni Piersanti
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Pesaro and Urbino, Italy
| |
Collapse
|
9
|
Wu J, Tongdee S, Cordier M, Darcel C. Selective Iron Catalyzed Synthesis of N-Alkylated Indolines and Indoles. Chemistry 2022; 28:e202201809. [PMID: 35700072 PMCID: PMC9796591 DOI: 10.1002/chem.202201809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/01/2023]
Abstract
Whereas iron catalysts usually promote catalyzed C3-alkylation of indole derivatives via a borrowing-hydrogen methodology using alcohols as the electrophilic partners, this contribution shows how to switch the selectivity towards N-alkylation. Thus, starting from indoline derivatives, N-alkylation was efficiently performed using a tricarbonyl(cyclopentadienone) iron complex as the catalyst in trifluoroethanol in the presence of alcohols leading to the corresponding N-alkylated indoline derivatives in 31-99 % yields (28 examples). The one-pot, two-step strategy for the selective N-alkylation of indolines is completed by an oxidation to give the corresponding N-alkylated indoles in 31-90 % yields (15 examples). This unprecedented oxidation methodology involves an iron salt catalyst associated with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) and a stoichiometric amount of t-BuOOH at room temperature.
Collapse
Affiliation(s)
- Jiajun Wu
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Satawat Tongdee
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Marie Cordier
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| | - Christophe Darcel
- Univ RennesCNRSISCR (Institut des Sciences Chimiques de Rennes) UMR 622635000RennesFrance
| |
Collapse
|
10
|
Tasker NR, Wipf P. A Short Synthesis of Ergot Alkaloids and Evaluation of the 5-HT 1/2 Receptor Selectivity of Lysergols and Isolysergols. Org Lett 2022; 24:7255-7259. [PMID: 35993579 DOI: 10.1021/acs.orglett.2c02569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Key transformations in a four-step synthesis of the ergot alkaloid scaffold include a novel cesium carbonate-mediated hydrogen autotransfer alkylation to generate the C(3)-C(4) bond and an intramolecular Heck reaction that directly establishes the C(9)-C(10) alkene of methyl lysergate. An ester reduction and a streamlined experimental procedure establish a readily scalable, expedient total synthesis of all four stereoisomers of lysergol and isolysergol, including the previously unknown (-)-lysergol, for pharmacological evaluation at 5-HT1A and 5HT2A,B,C receptors. A bicyclic scaffold is also characterized for the first time in the intramolecular Heck coupling.
Collapse
Affiliation(s)
- Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Hall CJJ, Marriott IS, Christensen KE, Day AJ, Goundry WRF, Donohoe TJ. Extension of hydrogen borrowing alkylation reactions for the total synthesis of (-)-γ-lycorane. Chem Commun (Camb) 2022; 58:4966-4968. [PMID: 35348143 DOI: 10.1039/d2cc01248k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The total synthesis of (-)-γ-lycorane (10 steps) and synthesis of (±)-γ-lycorane (8 steps) was completed from cyclohexenone. A new two step hydrogen borrowing alkylation of an aziridinyl alcohol, coupled with a Ph* (Me5C6) deprotection/cyclisation procedure was developed for de novo formation of the fused 6,5 heterocyclic ring. This work is one of the first examples of hydrogen borrowing C-C bond formation being used as a key step in a total synthesis project.
Collapse
Affiliation(s)
- Christopher J J Hall
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Indi S Marriott
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Kirsten E Christensen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Aaron J Day
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| | - William R F Goundry
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
12
|
Maji M, Borthakur I, Srivastava S, Kundu S. Regio-Selective C3- and N-Alkylation of Indolines in Water under Air Using Alcohols. J Org Chem 2022; 87:5603-5616. [PMID: 35416045 DOI: 10.1021/acs.joc.1c03040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We disclosed a regio-selective C-H and N-H bond functionalization of indolines using alcohols in water via tandem dehydrogenation of N-heterocycles and alcohols. A diverse range of N- and C3-alkylated indolines/indoles were accessed utilizing a new cooperative iridium catalyst. The practical applicability of this methodology was demonstrated by the preparative-scale synthesis and synthesis of a psychoactive drug, N,N-dimethyltryptamine. A catalytic cycle is proposed based on several kinetic experiments, series of control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sameer Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
13
|
Kise N, Mitsui Y, Sakurai T. Reductive coupling of isatins with α,β-unsaturated carbonyl compounds by low-valent titanium. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoki Kise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| | - Yuki Mitsui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
| | - Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| |
Collapse
|
14
|
Fujita S, Imagawa K, Yamaguchi S, Yamasaki J, Yamazoe S, Mizugaki T, Mitsudome T. A nickel phosphide nanoalloy catalyst for the C-3 alkylation of oxindoles with alcohols. Sci Rep 2021; 11:10673. [PMID: 34021187 PMCID: PMC8140154 DOI: 10.1038/s41598-021-89561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Although transition metal phosphides are well studied as electrocatalysts and hydrotreating catalysts, the application of metal phosphides in organic synthesis is rare, and cooperative catalysis between metal phosphides and supports remains unexplored. Herein, we report that a cerium dioxide-supported nickel phosphide nanoalloy (nano-Ni2P/CeO2) efficiently promoted the C-3 alkylation of oxindoles with alcohols without any additives through the borrowing hydrogen methodology. Oxindoles were alkylated with various alcohols to provide the corresponding C-3 alkylated oxindoles in high yields. This is the first catalytic system for the C-3 alkylation of oxindoles with alcohols using a non-precious metal-based heterogeneous catalyst. The catalytic activity of nano-Ni2P/CeO2 was comparable to that reported for precious metal-based catalysts. Moreover, nano-Ni2P/CeO2 was easily recoverable and reusable without any significant loss of activity. Control experiments revealed that the Ni2P nanoalloy and the CeO2 support functioned cooperatively, leading to a high catalytic performance.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kohei Imagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Sho Yamaguchi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Tomoo Mizugaki
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takato Mitsudome
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
15
|
Hall CJJ, Goundry WRF, Donohoe TJ. Hydrogen-Borrowing Alkylation of 1,2-Amino Alcohols in the Synthesis of Enantioenriched γ-Aminobutyric Acids. Angew Chem Int Ed Engl 2021; 60:6981-6985. [PMID: 33561302 PMCID: PMC8048514 DOI: 10.1002/anie.202100922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/22/2022]
Abstract
For the first time we have been able to employ enantiopure 1,2-amino alcohols derived from abundant amino acids in C-C bond-forming hydrogen-borrowing alkylation reactions. These reactions are facilitated by the use of the aryl ketone Ph*COMe. Racemisation of the amine stereocentre during alkylation can be prevented by the use of sub-stoichiometric base and protection of the nitrogen with a sterically hindered triphenylmethane (trityl) or benzyl group. The Ph* and trityl groups are readily cleaved in one pot to give γ-aminobutyric acid (GABA) products as their HCl salts without further purification. Both steps may be performed in sequence without isolation of the hydrogen-borrowing intermediate, removing the need for column chromatography.
Collapse
Affiliation(s)
- Christopher J. J. Hall
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - William R. F. Goundry
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaMacclesfieldSK10 2NAUK
| | - Timothy J. Donohoe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
16
|
Hydrogen‐Borrowing Alkylation of 1,2‐Amino Alcohols in the Synthesis of Enantioenriched γ‐Aminobutyric Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Donthireddy SNR, Tiwari CS, Kumar S, Rit A. Atom‐Economic Alk(en)ylations of Esters, Amides, and Methyl Heteroarenes Utilizing Alcohols Following Dehydrogenative Strategies. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- S. N. R. Donthireddy
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | | | - Shashi Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
18
|
Kadam SN, Ambhore AN, Kamble RD, Wakhradkar MG, Gavhane PD, Gaikwad MV, Gunturu KC, Dawane BS. Metal-free efficient thiolation of C(sp 2) functionalization via in situ-generated NHTS for the synthesis of novel sulfenylated 2-aminothiazole and imidazothiazole. NEW J CHEM 2021. [DOI: 10.1039/d0nj05904h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct metal-free approach for the synthesis of novel sulfenylated 2-aminothiazole and imidazothiazole derivatives at room temperature is reported via an in situ-generated electrophilic thiolating agent.
Collapse
Affiliation(s)
| | - Ajay N. Ambhore
- Padmabhushan Dr Vasantraodada Patil Mahavidyalay
- Tasgaon Sangli
- India
| | | | - Mahesh G. Wakhradkar
- School of Chemical sciences
- Swami Ramanand Teerth Marathwada University
- Nanded
- India
| | - Priya D. Gavhane
- School of Chemical sciences
- Swami Ramanand Teerth Marathwada University
- Nanded
- India
| | - Milind V. Gaikwad
- School of Chemical sciences
- Swami Ramanand Teerth Marathwada University
- Nanded
- India
| | | | - Bhaskar S. Dawane
- School of Chemical sciences
- Swami Ramanand Teerth Marathwada University
- Nanded
- India
| |
Collapse
|