1
|
Zhao MN, Yang ZM, Li LQ. DMF as an amine source: iron-catalyzed cyclization of 2 H-azirines to imidazoles. Chem Commun (Camb) 2024. [PMID: 38258986 DOI: 10.1039/d3cc06147g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A novel method has been developed for the synthesis of 1-methyl-4,5-diaryl-1H-imidazoles through Fe(II)-catalyzed cyclization of 2H-azirines and N,N-dimethylformamide (DMF) as an amine source. This transformation involves the cleavage of C-N and CN double bonds and the construction of new C-N and CN double bonds. The reaction has readily available starting materials, a wide range of substrates and mild reaction conditions. In addition, the reaction also facilitated the convenient synthesis of 1-methyl-2,4,5-triaryl-1H-imidazoles.
Collapse
Affiliation(s)
- Mi-Na Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| | - Zi-Mo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Lian-Qing Li
- College of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi'an, Shaanxi 710100, P. R. China.
| |
Collapse
|
2
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. Divergent Diazo Approach toward Alkyl 5/4-Hydroxy-3 H-benzo[ e]indole-4/5-carboxylates. J Org Chem 2023; 88:13191-13204. [PMID: 37672038 DOI: 10.1021/acs.joc.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A divergent diazo approach toward alkyl 5/4-hydroxy-3H-benzo[e]indole-4/5-carboxylates has been developed. The reaction of 1,3-diketones with alkyl 2-diazo-3-oxo-3-(2H-azirin-2-yl)propanoates catalyzed by Co(acac)3 or Ni(acac)2 gives various alkyl 3-(1H-pyrrol-2-yl)-2-diazo-3-oxopropanoate in good yields. The latter undergo Wolff rearrangement followed by the 6π-cyclization of transient ketene to form alkyl 5-hydroxy-3H-benzo[e]indole-4-carboxylates bearing various substituents in positions 1, 2, 7, and 8, as well as derivatives of methyl 4-hydroxy-6H-thieno[2,3-e]indole-5-carboxylates and methyl 5-hydroxy-7H-benzo[c]carbazole-6-carboxylate under thermolysis or Rh2(OAc)4 catalysis. Isomeric benzoindoles, alkyl 4-hydroxy-3H-benzo[e]indole-5-carboxylates, have been prepared by Boc-protection of the pyrrole nitrogen of alkyl 3-(1H-pyrrol-2-yl)-2-diazo-3-oxopropanoates followed by an intramolecular formal carbene insertion into the aromatic C-H bond catalyzed by Cu(OTf)2. The hydroxyl group of alkyl 5/4-hydroxy-3H-benzo[e]indole-4/5-carboxylates, through the formation of the corresponding triflates, allows the introduction of various substituents into the 5/4 position of benzo[e]indoles using the cross-coupling reaction and even form a new heterocyclic backbone, benzo[k]pyrrolo[2,3-i]phenanthridine, via a tandem Suzuki reaction/nucleophilic acyl substitution.
Collapse
Affiliation(s)
- Timur O Zanakhov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E Galenko
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
3
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Copper(II)-Catalyzed (3+2) Cycloaddition of 2 H-Azirines to Six-Membered Cyclic Enols as a Route to Pyrrolo[3,2- c]quinolone, Chromeno[3,4- b]pyrrole, and Naphtho[1,8- ef]indole Scaffolds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175681. [PMID: 36080448 PMCID: PMC9457675 DOI: 10.3390/molecules27175681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
A method for the [2+3] pyrroline annulation to the six-membered non-aromatic enols using 3-aryl-2H-azirines as annulation agents is developed in the current study. The reaction proceeds as a formal (3+2) cycloaddition via the N1-C2 azirine bond cleavage and is catalyzed by both Cu(II) and Cu(I) compounds. The new annulation method can be applied to prepare pyrrolo[3,2-c]quinoline, chromeno[3,4-b]pyrrole, and naphtho[1,8-ef]indole derivatives in good to excellent yields from enols of the quinolin-2-one, 2H-chromen-2-one, and 1H-phenalen-1-one series.
Collapse
|
4
|
Mhasni O, Elleuch H, Rezgui F. Direct nucleophilic substitutions of allylic alcohols with 1,3-dicarbonyl compounds: Synthetic design, mechanistic aspects and applications. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Wan Q, Xin L, Zhang J, Huang X. Efficient access to 1,3,4-trisubstituted pyrroles via gold-catalysed cycloisomerization of 1,5-diynes. Org Biomol Chem 2022; 20:1647-1651. [PMID: 35137761 DOI: 10.1039/d1ob02393d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A gold-catalysed cycloisomerization of 1,5-diynes is described, which offers a selective approach to access 1,3,4-trisubstituted pyrroles. In this reaction, the cationic gold catalyst activates the ynamide moiety, initiating the cycloisomerization to produce the pyrrole core, and H2O acts as an external nucleophile to trap the vinyl cationic species, thus leading to the formation of 1,3,4-trisubstituted pyrroles with high selectivity.
Collapse
Affiliation(s)
- Qiuling Wan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Luoting Xin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
6
|
Efimov IV, Kulikova LN, Miftyakhova AR, Matveeva MD, Voskressensky LG. Recent Advances for the Synthesis of N‐Unsubstituted Pyrroles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ilya V. Efimov
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Larisa N. Kulikova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Almira R. Miftyakhova
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| | - Maria D. Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky pr. 29 119991 Moscow Russia
| | - Leonid G. Voskressensky
- Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya st, 6 117198 Moscow Russia
| |
Collapse
|
7
|
Talbi S, Dib M, Bouissane L, Hafid A, Rabi S, Khouili M. Recent Progress in the Synthesis of Heterocycles Based on 1,3-Diketones. Curr Org Synth 2021; 19:220-245. [PMID: 34635043 DOI: 10.2174/1570179418666211011141428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
N,O-heterocycles containing the dicarbonyl ring play a significant role in heterocyclic and therapeutic chemistry. Since the discovery of 1,3-diketones, numerous research works have been achieved regarding the synthesis and its chemical reactivity. In this review, we have described the most relevant publications involving β-diketone compounds published during the period between 2018 to date. In addition, we include the 1,3-diketones-based heterocyclic compounds prepared by various synthetic methodologies.
Collapse
Affiliation(s)
- Soumaya Talbi
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Mustapha Dib
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Latifa Bouissane
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Abderrafia Hafid
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Souad Rabi
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Équipe de Chimie Organique et Organométallique Appliquées, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal. Morocco
| |
Collapse
|
8
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|