1
|
Maji A, Singh O, Sharma K, Kumari S, Ghosh K. Well Defined Phosphine Free Ni-Catalyzed Dehydrogenation of Secondary Alcohols for the Synthesis of Ketones and Ketazines. Chem Asian J 2024; 19:e202400818. [PMID: 39363755 DOI: 10.1002/asia.202400818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
In this work, we unveil a novel synthesis of bench stable Ni (II) complexes supported by tetradentate Schiff-base ligands and the complexes were devoid of any phosphine or phosphine-based ligand. These Ni-complexes were successfully applied for the dehydrogenation of secondary alcohols for ketone and ketazine syntheses. Secondary alcohols with different functional groups were well tolerated during catalytic cycle. Moreover, we successfully extended this protocol for the synthesis of biologically significant ketones and ketazines. On the basis of various control experiments, probable reaction pathway was proposed, and an acceptorless alcohol dehydrogenation mechanism was suggested.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ovender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Keshav Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Sivakumar G, Suresh AK, Padhy SR, Balaraman E. Double dehydrogenative coupling of amino alcohols with primary alcohols under Mn(I) catalysis. Chem Commun (Camb) 2024; 60:13606-13609. [PMID: 39484689 DOI: 10.1039/d4cc03595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we unveil a method for synthesizing substituted pyrrole and pyrazine compounds via a double dehydrogenative coupling of amino alcohols with primary alcohols, facilitated by Mn(I)-PNP catalysis, which uniquely enables the simultaneous formation of C-C and C-N bonds.
Collapse
Affiliation(s)
- Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| |
Collapse
|
3
|
Savarimuthu Selvan C, Rengan R, Malecki JG. One-Pot Sustainable Synthesis of Highly Substituted Pyrimidines via Acceptorless Dehydrogenative Annulation of Alcohols Using Pincer Ni(II)-NNS Catalysts. J Org Chem 2024; 89:11148-11160. [PMID: 39087691 DOI: 10.1021/acs.joc.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We report an efficient and sustainable synthesis of highly substituted pyrimidines promoted by nickel(II)-NNS pincer-type complexes via acceptorless dehydrogenative annulations of readily available alcohols, malononitrile, and guanidine/benzamidine salt under eco-friendly conditions for the first time. Different sets of Ni(II) complexes (C1-C3) encapsulated in NNS pincer-type thiosemicarbazone ligands have been synthesized and authenticated by analytical and spectroscopic (Fourier transform infrared, nuclear magnetic resonance, and high-resolution mass spectrometry) techniques. The solid state three-dimensional structure of a representative complex (C2) has been determined with the aid of single crystal XRD analysis and confirms a square planar architecture around the nickel ion. Further, the well-defined Ni(II) complexes have been employed as efficient catalysts for the fabrication of a wide range of 4-aminopyrimidine-5-carbonitrile derivatives (33 examples) from readily available alcohols with suitable coupling partners such as malononitrile and guanidine/benzamidine under eco-friendly conditions. The current catalytic approach affords maximum yields up to 95% utilizing 3 mol % catalyst loading and water/hydrogen as the only byproduct. A feasible catalytic pathway has been proposed based on the different control experiment reactions, which clearly indicate that the coupling reaction proceeds via aldehyde and benzylidenemalononitrile intermediates. The practicability of the current protocol has been demonstrated by the large-scale synthesis of one of the products, 4-amino-2,6-diphenylpyrimidine-5-carbonitrile, and a short synthesis of a cytosine antifungal analogue.
Collapse
Affiliation(s)
- Clinton Savarimuthu Selvan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
| | - Jan Grzegorz Malecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice 40-006, Poland
| |
Collapse
|
4
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
5
|
Bera K, Mukherjee A. Chemoselective α-Alkylation of Nitriles with Primary Alcohols by Manganese(I)-Catalysis. Chem Asian J 2023:e202300157. [PMID: 37156742 DOI: 10.1002/asia.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Indexed: 05/10/2023]
Abstract
A sustainable and easy-to-use protocol for the alkylation of aryl nitriles with the earth-abundant manganese(I) catalyst is presented. The alkylation reaction employs readily available nitriles and naturally abundant alcohols as the coupling partners. The reaction proceeds chemoselectively and encompasses a broad substrate scope with good to excellent yields. The catalytic reaction yields selectively α-branched nitriles and water as the sole byproduct. Experimental studies were executed to understand the mechanism of the catalytic reaction.
Collapse
Affiliation(s)
- Krishanu Bera
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| |
Collapse
|
6
|
Donthireddy SNR, Siddique M, Rit A. N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. J Org Chem 2023; 88:1135-1146. [PMID: 36603160 DOI: 10.1021/acs.joc.2c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The "borrowing hydrogen" (BH) approach for the N-alkylation of phenylenediamines using alcohols as coupling partners is highly challenging due to the selectivity issue of the generated products. Furthermore, the development of base-metal systems that can potentially substitute precious metals with competitive activity is a major challenge in BH catalysis. We present herein an efficient protocol for the N,N'-di-alkylation of aromatic diamines using an in situ-generated Ni-NHC complex from NiCl2 and the ligand L1, which gave access to a wide range of N,N'-di-alkylated orthophenylene diamines (rather than the generally observed benzimidazole derivatives), meta- and para-phenylene diamines along with 2,6-diamino pyridine derivatives in good to excellent yields. Moreover, the catalyst system was also successful in the derivatization of a clinically important drug molecule, Dapsone. Notably, the present protocol could be applied effectively to synthesize unsymmetrically substituted N,N'-di-alkylated diamines via sequential alkylation and is the first report in the base-metal system to the best of our knowledge. Diverse control experiments including the deuterium incorporation studies suggest that the present protocol proceeds via a BH sequence.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Misba Siddique
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Anandaraj P, Ramesh R, Malecki JG. Direct Synthesis of Benzimidazoles by Pd(II) N^N^S-Pincer Type Complexes via Acceptorless Dehydrogenative Coupling of Alcohols with Diamines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Nad P, Behera AK, Sen A, Mukherjee A. Catalytic and Mechanistic Approach to the Metal-Free N-Alkylation of 2-Aminopyridines with Diketones. J Org Chem 2022; 87:15403-15414. [PMID: 36350139 DOI: 10.1021/acs.joc.2c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-alkylation of amines is an important catalytic reaction in synthetic chemistry. Herein, we report a simple strategy for the N-alkylation of 2-aminopyridines with 1,2-diketones using BF3·OEt2 as a catalyst. The reaction proceeds under aerobic conditions, leading to the formation of a diverse range of substituted secondary amines in good to excellent yields. A close inspection of the mechanistic pathway using various spectroscopic techniques and the computational study revealed that the reaction proceeds through the formation of an iminium-keto intermediate with the liberation of CO2.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| | - Anil Kumar Behera
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Anik Sen
- Department of Chemistry (CMDD Lab), GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
9
|
Maji A, Gupta S, Maji M, Kundu S. Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. J Org Chem 2022; 87:8351-8367. [PMID: 35726206 DOI: 10.1021/acs.joc.2c00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we report a simple, phosphine-free, and inexpensive catalytic system based on a manganese(II) complex for synthesizing different important N-heterocycles such as quinolines, pyrroles, and pyridines from amino alcohols and ketones. Several control experiments, kinetic studies, and DFT calculations were carried out to support the plausible reaction mechanism. We also detected two potential intermediates in the catalytic cycle using ESI-MS analysis. Based on these studies, a metal-ligand cooperative mechanism was proposed.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivangi Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Milan Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
10
|
Balakrishnan V, Ganguly A, Rasappan R. Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Org Lett 2022; 24:4804-4809. [PMID: 35758604 DOI: 10.1021/acs.orglett.2c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen borrowing strategy is an economical method for the α-functionalization of ketones. While this strategy is extremely advantageous, it does not lend itself to the synthesis of β,β-disubstituted ketones. This can be achieved, if the in situ generated metal hydride can be intercepted with a nucleophilic coupling partner. We present a multicomponent strategy for the coupling of alcohols, ketones, and boronic acids using only 1 mol % nickel catalyst and without the need for added ligands.
Collapse
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
11
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|