1
|
Peng TF, Liu P, Guo YX, Chen MH, Tong MT, Peng DX, Yang ZT, Zhao R, Shen X, Liu JJ, Cheng FX, Shen XF. Enantioselective formal total synthesis of dihydrospirotryprostatin B. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1175-1191. [PMID: 38829012 DOI: 10.1080/10286020.2024.2355504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.
Collapse
Affiliation(s)
- Tian-Feng Peng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Peng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Yu-Xin Guo
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Meng-Hua Chen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Man-Ting Tong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Deng-Xian Peng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Zhen-Ting Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Rou Zhao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xiang Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xian-Fu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
2
|
Abbass EM, El-Rayyes A, Khalil Ali A, El-Farargy AF, Kozakiewicz-Piekarz A, Ramadan RM. Catalyzed syntheses of novel series of spiro thiazolidinone derivatives with nano Fe 2O 3: spectroscopic, X-ray, Hirshfeld surface, DFT, biological and docking evaluations. Sci Rep 2024; 14:18773. [PMID: 39138211 PMCID: PMC11322538 DOI: 10.1038/s41598-024-65282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Twelve spiro thiazolidinone compounds (A-L) were synthesized via either conventional thermal or ultrasonication techniques using Fe2O3 nanoparticles. The modification of the traditional procedure by using Fe2O3 nanoparticles led to enhancement of the yield of the desired candidates to 78-93% in approximately half reaction time compared with 58-79% without catalyst. The products were fully characterized using different analytical and spectroscopic techniques. The structure of the two derivatives 4-phenyl-1-thia-4-azaspirodecan-3-one (A) and 4-(p-tolyl)-1-thia-4-azaspirodecan-3-one (B) were also determined using single crystal X-ray diffraction and Hirshfeld surface analysis. The two compounds (A and B) were crystallized in the orthorhombic system with Pbca and P212121 space groups, respectively. In addition, the crystal packing of compounds revealed the formation of supramolecular array with a net of intermolecular hydrogen bonding interactions. The energy optimized geometries of some selected derivatives were performed by density functional theory (DFT/B3LYP). The reactivity descriptors were also calculated and correlated with their biological properties. All the reported compounds were screened for antimicrobial inhibitions. The two derivatives, F and J, exhibited the highest levels of bacterial inhibition with an inhibition zone of 10-17 mm. Also, the two derivatives, F and J, displayed the most potent fungal inhibition with an inhibition zone of 15-23 mm. Molecular docking investigations of some selected derivatives were performed using a B-DNA (PDB: 1BNA) as a macromolecular target. Structure and activity relationship of the reported compounds were correlated with the data of antimicrobial activities and the computed reactivity parameters.
Collapse
Affiliation(s)
- Eslam M Abbass
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, 1321, Arar, Saudi Arabia
| | - Ali Khalil Ali
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F El-Farargy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Anna Kozakiewicz-Piekarz
- Department of Biomedical Chemistry and Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ramadan M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Alshammari OAO, Azzam EMS, Alhar MS, Alanazi KD, Aljuhani SAA, Elsofany WI. Antibacterial and Anticandidal Activity of the Nanostructural Composite of a Spirothiazolidine-Derivative Assembled on Silver Nanoparticles. Molecules 2024; 29:1139. [PMID: 38474650 DOI: 10.3390/molecules29051139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Our aims in this work are the preparation of an ionic liquid based on heterocyclic compounds with Ag nanoparticles and the investigation of its application as an antibacterial and anticandidal agent. These goals were achieved through the fabrication of an ionic liquid based on Ag nanoparticles with 5-Amino-3-(4-fluorophenyl)-N-hexadecyl-7-(4-methylphenyl)-2-H spiro[cyclohexane1,2'-[1,3]thiazolo [4,5-b]pyridine]-6-carbonitrile (P16). The nanostructure of the prepared ionic liquid was characterized using techniques such as FTIR, 1HNMR, 13CNMR, UV, SEM, and TEM. The biological activity of the prepared compound (P16) and its nanocomposites with Ag nanoparticles was tested using five clinical bacteria (Pseudomonas aeruginosa 249; Escherichia coli 141; Enterobacter cloacae 235; Staphylococcus epidermidis BC 161, and methicillin-resistant S. aureus 217), and three Candida species (Candida utilis ATCC 9255; C. tropicalis ATCC 1362, and C. albicans ATCC 20402). The FTIR, 1HNMR, and 13CNMR results confirmed the chemical structure of the synthesized P16 compound. The nanostructure of the prepared ionic liquid was determined based on data obtained from the UV, SEM, and TEM tests. The antibacterial and anticandidal results showed that the biological activity of the compound (P16) was enhanced after the formation of nanocomposite structures with Ag nanoparticles. Moreover, the biological activity of the compound itself (P16) and that of its nanocomposite structure with Ag nanoparticles was higher than that of ampicillin and amphotericin B, which were used as control drugs in this work.
Collapse
Affiliation(s)
- Odeh A O Alshammari
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Eid M S Azzam
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
- Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Munirah S Alhar
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Kaseb D Alanazi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Sara A A Aljuhani
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Walaa I Elsofany
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Peng T, Liu T, Zhao J, Dong J, Zhao Y, Yang Y, Yan X, Xu W, Shen X. Enantioselective Total Synthesis of Spirotryprostatin A. J Org Chem 2022; 87:16743-16754. [PMID: 36445815 DOI: 10.1021/acs.joc.2c02391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we disclosed a novel enantioselective total synthesis of spirotryprostatin A (1) in 15 steps with a 7.4% total yield from commercially available 2-iodo-5-methoxyaniline and γ-butyrolactone. The key step features of this synthesis include the copper-catalyzed cascade reaction of o-iodoaniline derivatives with alkynone to introduce the quaternary carbon stereocenter and an aza-Michael tandem reaction to construct the spiro[pyrrolidine-3,3'-oxindole] moiety.
Collapse
Affiliation(s)
- Tianfeng Peng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jianwei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Yuxiang Zhao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Yixiao Yang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Xin Yan
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Wenlu Xu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|