1
|
Yan L, Wu H, Guan S, Ma W, Fu Y, Ji P, Lian Z, Zhang L, Xing Y, Wang B, Liu G. The Effects of Mammary Gland ATIII Overexpression on the General Health of Dairy Goats and Their Anti-Inflammatory Response to LPS Stimulation. Int J Mol Sci 2023; 24:15303. [PMID: 37894983 PMCID: PMC10607088 DOI: 10.3390/ijms242015303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality and particularly their response to inflammatory challenge. The results showed that transgenic goats have a normal phenotype regarding their physiological and biochemical parameters, including whole blood cells, serum protein levels, total cholesterol, urea nitrogen, uric acid, and total bilirubin, compared to the WT. In addition, the quality of milk also improved in transgenic animals compared to the WT, as indicated by the increased milk fat and dry matter content and the reduced somatic cell numbers. Under the stimulation of an LPS injection, the transgenic goats had elevated contents of IGA, IGM and superoxide dismutase SOD, and had reduced proinflammatory cytokine release, including IL-6, TNF-α and IFN-β. A 16S rDNA sequencing analysis also showed that the transgenic animals had a similar compositions of gut microbiota to the WT goats under the stimulation of LPS injections. Mammary gland ATIII overexpression in dairy goats is a safe process, and it did not jeopardize the general health of the transgenic animals; moreover, the compositions of their gut microbiota also improved with the milk quality. The LPS stimulation study suggests that the increased ATIII expression may directly or indirectly suppress the inflammatory response to increase the resistance of transgenic animals to pathogen invasion. This will be explored in future studies.
Collapse
Affiliation(s)
- Laiqing Yan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Hao Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Shengyu Guan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Wenkui Ma
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Yao Fu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Pengyun Ji
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Zhengxing Lian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Lu Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Yiming Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Bingyuan Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| | - Guoshi Liu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.Y.); (H.W.); (S.G.); (W.M.); (Y.F.); (P.J.); (Z.L.); (L.Z.)
| |
Collapse
|
2
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
3
|
Wu H, Cui X, Guan S, Li G, Yao Y, Wu H, Zhang J, Zhang X, Yu T, Li Y, Lian Z, Zhang L, Liu G. The Improved Milk Quality and Enhanced Anti-Inflammatory Effect in Acetylserotonin-O-methyltransferase ( ASMT) Overexpressed Goats: An Association with the Elevated Endogenous Melatonin Production. Molecules 2022; 27:572. [PMID: 35056885 PMCID: PMC8778916 DOI: 10.3390/molecules27020572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Transgenic animal production is an important means of livestock breeding and can be used to model pharmaceutical applications. METHODS In this study, to explore the biological activity of endogenously produced melatonin, Acetylserotonin-O-methyltransferase (ASMT)-overexpressed melatonin-enriched dairy goats were successfully generated through the use of pBC1-ASMT expression vector construction and prokaryotic embryo microinjection. RESULTS These transgenic goats have the same normal phenotype as the wild-type goats (WT). However, the melatonin levels in their blood and milk were significantly increased (p < 0.05). In addition, the quality of their milk was also improved, showing elevated protein content and a reduced somatic cell number compared to the WT goats. No significant changes were detected in the intestinal microbiota patterns between groups. When the animals were challenged by the intravenous injection of E. coli, the ASMT-overexpressed goats had a lower level of pro-inflammatory cytokines and higher anti-inflammatory cytokines compared to the WT goats. Metabolic analysis uncovered a unique arachidonic acid metabolism pattern in transgenic goats. CONCLUSIONS The increased melatonin production due to ASMT overexpression in the transgenic goats may have contributed to their improved milk quality and enhanced the anti-inflammatory ability compared to the WT goats.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Xudai Cui
- Qingdao Senmiao Industrial Co., Ltd., Qingdao 266101, China; (X.C.); (Y.L.)
| | - Shengyu Guan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Yujun Yao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Haixin Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Husbandry and Veterinary, Tianjin 300192, China; (J.Z.); (X.Z.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Husbandry and Veterinary, Tianjin 300192, China; (J.Z.); (X.Z.)
| | - Tuan Yu
- Tianheng Animal Health and Product Quality Supervision Station, Qingdao 266200, China;
| | - Yunxiang Li
- Qingdao Senmiao Industrial Co., Ltd., Qingdao 266101, China; (X.C.); (Y.L.)
| | - Zhengxing Lian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.W.); (S.G.); (G.L.); (Y.Y.); (H.W.); (Z.L.); (L.Z.)
| |
Collapse
|
4
|
Eghbalsaied S, Kues WA. An electrochemical protocol for CRISPR-mediated gene-editing of sheep embryonic fibroblast cells. Cells Tissues Organs 2021; 212:176-184. [PMID: 34823242 DOI: 10.1159/000521128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic engineering of farm animals is commonly carried out via cell-mediated transfection followed by somatic cell nuclear transfer. However, efficient transfer of exogenous DNA into ovine embryonic fibroblast (EF) cells without compromising cell viability have remained a challenging issue. Here, we aimed to develop a protocol for electrotransfection of sheep EF cells. First, we optimized the pulsing condition using an OptiMEM-GlutaMAX medium as the electroporation buffer and found two pulses of 270 V, each for 10 ms and 10 s interval, is the most efficient condition to have a high rate of transfection and cell survival. Moreover, supplementing 3 % dimethyl sulfoxide (DMSO) into the electroporation medium considerably improved the cell viability after the electroporation process. The electroporation procedure resulted in > 98% transfection efficiency and > 97 % cell survival rate using reporter plasmids. Finally, using CRISPR/Cas9-encoding vectors, we targeted BMP15 and GDF9 genes in sheep EF cells. The electroporated cells are associated with a 52 % indels rate using single gRNAs as well as a highly efficient target deletion using two gRNAs. In conclusion, we developed an electrotransfection protocol using the OptiMEM-GlutaMAX medium supplemented with 3 % DMSO for sheep EF cells. The electroporation method can be used for cell-mediated gene-editing in sheep.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute of Animal Health, Biotechnology, Stem Cell Physiology, Neustadt, Germany
- Department of Animal Science, Isfahan branch, Islamic Azad University, Isfahan, Iran
| | - Wilfried A Kues
- Department of Animal Science, Isfahan branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
5
|
Park JE, Sasaki E. Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR J 2021; 61:286-303. [PMID: 33693670 PMCID: PMC8918153 DOI: 10.1093/ilar/ilab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Genetic modification of nonhuman primate (NHP) zygotes is a useful method for the development of NHP models of human diseases. This review summarizes the recent advances in the development of assisted reproductive and genetic manipulation techniques in NHP, providing the basis for the generation of genetically modified NHP disease models. In this study, we review assisted reproductive techniques, including ovarian stimulation, in vitro maturation of oocytes, in vitro fertilization, embryo culture, embryo transfer, and intracytoplasmic sperm injection protocols in marmosets. Furthermore, we review genetic manipulation techniques, including transgenic strategies, target gene knock-out and knock-in using gene editing protocols, and newly developed gene-editing approaches that may potentially impact the production of genetically manipulated NHP models. We further discuss the progress of assisted reproductive and genetic manipulation techniques in NHP; future prospects on genetically modified NHP models for biomedical research are also highlighted.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, School of Medicine in Pittsburgh, Pennsylvania, USA
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals in Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Zinovieva NA, Volkova NA, Bagirov VA. Genome Editing: Current State of Research and Application to Animal Husbandry. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s000368381907007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Effects of Temperatures and Basal Media on Primary Culture of the Blastomeres Derived from the Embryos at Blastula Stage in Marine Medaka Oryzias dancena. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Blödorn EB, Domingues WB, Komninou ER, Daneluz L, Dellagostin EN, Weege A, Varela AS, Corcini CD, Collares TV, Campos VF. Voltages up to 600V did not affect cryopreserved bovine spermatozoa on capillary-type electroporation. Reprod Biol 2018; 18:416-421. [DOI: 10.1016/j.repbio.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022]
|
9
|
Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2018; 100:10314-10331. [PMID: 29153167 DOI: 10.3168/jds.2017-13138] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
Reproductive technology revolutionized dairy production during the past century. Artificial insemination was first successfully applied to cattle in the early 1900s. The next major developments involved semen extenders, invention of the electroejaculator, progeny testing, addition of antibiotics to semen during the 1930s and 1940s, and the major discovery of sperm cryopreservation with glycerol in 1949. The 1950s and 1960s were particularly productive with the development of protocols for the superovulation of cattle with both pregnant mare serum gonadotrophin/equine chorionic gonadotrophin and FSH, the first successful bovine embryo transfer, the discovery of sperm capacitation, the birth of rabbits after in vitro fertilization, and the development of insulated liquid nitrogen tanks. Improved semen extenders and the replacement of glass ampules with plastic semen straws followed. Some of the most noteworthy developments in the 1970s included the initial successes with in vitro culture of embryos, calves born after chromosomal sexing as embryos, embryo splitting resulting in the birth of twins, and development of computer-assisted semen analysis. The 1980s brought flow cytometric separation of X- and Y-bearing sperm, in vitro fertilization leading to the birth of live calves, clones produced by nuclear transfer from embryonic cells, and ovum pick-up via ultrasound-guided follicular aspiration. The 20th century ended with the birth of calves produced from AI with sexed semen, sheep and cattle clones produced by nuclear transfer from adult somatic cell nuclei, and the birth of transgenic cloned calves. The 21st century has seen the introduction of perhaps the most powerful biotechnology since the development of artificial insemination and cryopreservation. Quick, inexpensive genomic analysis via the use of single nucleotide polymorphism genotyping chips is revolutionizing the cattle breeding industry. Now, with the introduction of genome editing technology, the changes are becoming almost too rapid to fully digest.
Collapse
Affiliation(s)
- S G Moore
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| | - J F Hasler
- Vetoquinol USA, Fort Worth, TX; 427 Obenchain Rd., Laporte, CO 80535
| |
Collapse
|
10
|
Park MH, Kim MS, Yun JI, Choi JH, Lee E, Lee ST. Integrin Heterodimers Expressed on the Surface of Porcine Spermatogonial Stem Cells. DNA Cell Biol 2018; 37:253-263. [DOI: 10.1089/dna.2017.4035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Min Hee Park
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Min Seong Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon, Korea
| | - Jung Hoon Choi
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
11
|
Jiang S, Lu Y, Dai Y, Qian L, Muhammad AB, Li T, Wan G, Parajulee MN, Chen F. Impacts of elevated CO 2 on exogenous Bacillus thuringiensis toxins and transgene expression in transgenic rice under different levels of nitrogen. Sci Rep 2017; 7:14716. [PMID: 29116162 PMCID: PMC5676734 DOI: 10.1038/s41598-017-15321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
Recent studies have highlighted great challenges of transgene silencing for transgenic plants facing climate change. In order to understand the impacts of elevated CO2 on exogenous Bacillus thuringiensis (Bt) toxins and transgene expression in transgenic rice under different levels of N-fertilizer supply, we investigated the biomass, exogenous Bt toxins, Bt-transgene expression and methylation status in Bt rice exposed to two levels of CO2 concentrations and nitrogen (N) supply (1/8, 1/4, 1/2, 1 and 2 N). It is elucidated that the increased levels of global atmospheric CO2 concentration will trigger up-regulation of Bt toxin expression in transgenic rice, especially with appropriate increase of N fertilizer supply, while, to some extent, the exogenous Bt-transgene expression is reduced at sub-N levels (1/4 and 1/2N), even though the total protein of plant tissues is reduced and the plant growth is restricted. The unpredictable and stochastic occurrence of transgene silencing and epigenetic alternations remains unresolved for most transgenic plants. It is expected that N fertilization supply may promote the expression of transgenic Bt toxin in transgenic Bt rice, particularly under elevated CO2.
Collapse
Affiliation(s)
- Shoulin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongqing Lu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Qian
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Teng Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guijun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Megha N Parajulee
- Texas A&M University AgriLife Research and Extension Center, Lubbock, TX, USA
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Abstract
In the past few years, new technologies have arisen that enable higher efficiency of gene editing. With the increase ease of using gene editing technologies, it is important to consider the best method for transferring new genetic material to livestock animals. Microinjection is a technique that has proven to be effective in mice but is less efficient in large livestock animals. Over the years, a variety of methods have been used for cloning as well as gene transfer including; nuclear transfer, sperm mediated gene transfer (SMGT), and liposome-mediated DNA transfer. This review looks at the different success rate of these methods and how they have evolved to become more efficient. As well as gene editing technologies, including Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the most recent clustered regulatory interspaced short palindromic repeats (CRISPRs). Through the advancements in gene-editing technologies, generating transgenic animals is now more accessible and affordable. The goals of producing transgenic animals are to 1) increase our understanding of biology and biomedical science; 2) increase our ability to produce more efficient animals; and 3) produce disease resistant animals. ZFNs, TALENs, and CRISPRs combined with gene transfer methods increase the possibility of achieving these goals.
Collapse
Key Words
- BLG, β-lactoglobulin
- CRISPR
- CRISPRs, clustered regulatory interspaced short palindromic repeats
- EG, embryonic germ
- ES, Embryonic stem
- ESC, Embryonic stem cell
- HDR, homology directed repair
- ICM, inner cell mass
- ICSI, intracytoplasmic sperm injection
- NHEJ, non-homologous end joining
- NT, nuclear transfers
- OBCT, oocyte bisection technique
- PAM, protospacer adjacent motif
- PCR, polymerase chain reaction
- PGCS, primordial germ cells
- RVDs, repeat variable diresidues
- SMGT
- SMGT, sperm mediated gene transfer
- SV40, simian virus 40
- TALEN
- TALENs, transcription activator-like effector nucleases
- ZFN
- ZFN, Zinc-finger nucleases
- gene editing
- gene transfer
- iPSC, induced pluripotent stem cells
- nuclear transfer
- ssODN, single strand oligo nucleotide
Collapse
Affiliation(s)
- Samantha N Lotti
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Kathryn M Polkoff
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA
| | - Marcello Rubessa
- b Carl R. Woese Institute for Genomic Biology, University of Illinois , Urbana , IL , USA
| | - Matthew B Wheeler
- a Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois , USA.,b Carl R. Woese Institute for Genomic Biology, University of Illinois , Urbana , IL , USA
| |
Collapse
|
13
|
Kurome M, Leuchs S, Kessler B, Kemter E, Jemiller EM, Foerster B, Klymiuk N, Zakhartchenko V, Wolf E. Direct introduction of gene constructs into the pronucleus-like structure of cloned embryos: a new strategy for the generation of genetically modified pigs. Transgenic Res 2016; 26:309-318. [PMID: 27943082 DOI: 10.1007/s11248-016-0004-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/23/2016] [Indexed: 02/05/2023]
Abstract
Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed "nuclear injection". To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.
Collapse
Affiliation(s)
- Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany.
| | - Simon Leuchs
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Eva-Maria Jemiller
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Beatrix Foerster
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Center for Innovative Medical Models (CiMM), LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| |
Collapse
|
14
|
Cell viability of bovine spermatozoa subjected to DNA electroporation and DNAse I treatment. Theriogenology 2016; 85:1312-22. [DOI: 10.1016/j.theriogenology.2015.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 12/19/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022]
|
15
|
Choudhary KK, Kavya KM, Jerome A, Sharma RK. Advances in reproductive biotechnologies. Vet World 2016; 9:388-95. [PMID: 27182135 PMCID: PMC4864481 DOI: 10.14202/vetworld.2016.388-395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.
Collapse
Affiliation(s)
- K. K. Choudhary
- ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - K. M. Kavya
- ICAR-Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India
| | - A. Jerome
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| | - R. K. Sharma
- ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India
| |
Collapse
|
16
|
Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. ZYGOTE 2015. [PMID: 26197710 DOI: 10.1017/s0967199415000374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many transgenic domestic animals have been developed to produce therapeutic proteins in the mammary gland, and this approach is one of the most important methods for agricultural and biomedical applications. However, expression and secretion of a protein varies because transgenes are integrated at random sites in the genome. In addition, distal enhancers are very important for transcriptional gene regulation and tissue-specific gene expression. Development of a vector system regulated accurately in the genome is needed to improve production of therapeutic proteins. The objective of this study was to develop a knock-in system for expression of human fibroblast growth factor 2 (FGF2) in the bovine β-casein gene locus. The F2A sequence was fused to the human FGF2 gene and inserted into exon 3 of the β-casein gene. We detected expression of human FGF2 mRNA in the HC11 mouse mammary epithelial cells by RT-PCR and human FGF2 protein in the culture media using western blot analysis when the knock-in vector was introduced. We transfected the knock-in vector into bovine ear fibroblasts and produced knock-in fibroblasts using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Moreover, the CRISPR/Cas9 system was more efficient than conventional methods. In addition, we produced knock-in blastocysts by somatic cell nuclear transfer using the knock-in fibroblasts. Our knock-in fibroblasts may help to create cloned embryos for development of transgenic dairy cattle expressing human FGF2 protein in the mammary gland via the expression system of the bovine β-casein gene.
Collapse
|
17
|
|
18
|
Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci Rep 2014; 4:7621. [PMID: 25532495 PMCID: PMC4274505 DOI: 10.1038/srep07621] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian genomes can be edited by injecting pronuclear embryos with Cas9 cRNA and guide RNA (gRNA) but it is unknown whether editing can also occur during the onset of embryonic development, prior to pronuclear embryogenesis. We here report Cas9-mediated editing during sperm-induced meiotic exit and the initiation of development. Injection of unfertilized, mouse metaphase II (mII) oocytes with Cas9 cRNA, gRNA and sperm enabled efficient editing of transgenic and native alleles. Pre-loading oocytes with Cas9 increased sensitivity to gRNA ~100-fold. Paternal allelic editing occurred as an early event: single embryo genome analysis revealed editing within 3 h of sperm injection, coinciding with sperm chromatin decondensation during the gamete-to-embryo transition but prior to pronucleus formation. Maternal alleles underwent editing after the first round of DNA replication, resulting in mosaicism. Asymmetric editing of maternal and paternal alleles suggests a novel strategy for discriminatory targeting of parental genomes.
Collapse
|
19
|
Abstract
The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging.
Collapse
Affiliation(s)
- Gökhan Gün
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
- Molecular Biology & Genetics, Istanbul Technical University, Istanbul, Turkey
- Histology and Embryology Department, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Wilfried A. Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Mariensee, Neustadt, Germany
| |
Collapse
|
20
|
Patel UA, Patel AK, Joshi CG. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi. Biotechnol Prog 2014; 31:452-9. [PMID: 25395261 DOI: 10.1002/btpr.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/20/2014] [Indexed: 12/21/2022]
Abstract
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals.
Collapse
Affiliation(s)
- Utsav A Patel
- Dept. of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India, 388001
| | | | | |
Collapse
|
21
|
Lee SM, Kim JW, Jeong YH, Kim SE, Kim YJ, Moon SJ, Lee JH, Kim KJ, Kim MK, Kang MJ. Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1644-51. [PMID: 25358326 PMCID: PMC4213711 DOI: 10.5713/ajas.2014.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 12/02/2022]
Abstract
Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine β-casein gene locus using a knock-in vector for the β-casein gene locus. We developed the knock-in vector on the porcine β-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5′ arm and 3′ arm from the porcine β-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using β-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous β-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.
Collapse
Affiliation(s)
- Sang Mi Lee
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Ji Woo Kim
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Hee Jeong
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Se Eun Kim
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Yeong Ji Kim
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Seung Ju Moon
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Ji-Hye Lee
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Keun-Jung Kim
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Min-Kyu Kim
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| | - Man-Jong Kang
- Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
22
|
Construction of a lentiviral T/A vector for direct analysis of PCR-amplified promoters. Mol Biol Rep 2014; 41:7651-8. [PMID: 25091945 DOI: 10.1007/s11033-014-3656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
The promoter plays an important role in the regulation of gene expression. To analyze a promoter's activity, we developed a novel lentiviral T/A vector that contains two reporter genes, a luciferase (Luc2) gene and a green fluorescent protein (Venus) gene, that are linked via an internal ribosome entry site (IRES2). To test the performance of this vector, phosphoglycerate kinase-1 (PGK) and elongation factor-1α (EF1α) promoters were amplified by PCR and inserted into this lentiviral T/A vector using T4 DNA ligase, yielding two promoter-reporter vectors: pLent-T-PGK and pLent-T-EF1α. When these vectors were transfected into 293T cells, we observed a higher level of Venus expression under a fluorescence microscopy in the case of pLent-T-EF1α as compared to pLent-T-PGK. The results of the luciferase reporter assay showed that the ratio of the promoter activities of EF1α and PGK was approximately 9:1. The two promoter-reporter vectors were also packaged as lentiviral particles to conduct promoter activity assay in cultured cells. The ratio of the promoter activities of EF1α and PGK was 4.23:1 when they were infected into 293T cells at a multiplicity of infection of 1. This value is comparable to that of a parallel experiment using the commercial luciferase reporter vector pGL4.10 with an activity ratio of 5.99:1 for EF1α and PGK. These results indicate that lentiviral T/A vector will be a useful tool for analysis of promoter activity and specificity.
Collapse
|
23
|
Park KE, Telugu BPVL. Role of stem cells in large animal genetic engineering in the TALENs-CRISPR era. Reprod Fertil Dev 2014; 26:65-73. [PMID: 24305178 DOI: 10.1071/rd13258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.
Collapse
Affiliation(s)
- Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
24
|
Moreira PN, Montoliu L. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis in mice. Methods Mol Biol 2014; 1194:141-156. [PMID: 25064101 DOI: 10.1007/978-1-4939-1215-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Over the years many well-described techniques for the introduction of transgene DNA into host organisms have been used, including pronuclear injection, in vitro fertilization-mediated transgenesis, transfection of ES and spermatogenic cells, nuclear transfer of somatic cell nuclei, and lentiviral vectors. The application of these techniques has been limited however either by the time and effort to be executed or by their narrow efficiency with large transgenes. The greatest advantage of intracytoplasmic sperm injection (ICSI)-mediated transgenesis is precisely its ability to stably introduce large DNA molecules into the genome of host organisms with relatively high efficiency, as compared to alternative procedures. In mice, this procedure has been shown to be a reproducible method to generate transgenic offspring with a high efficiency. Recently, it proved also to be a viable method to generate transgenic rats and pigs, and as such, it is foreseen with great interest for the production of transgenic farm animals, where it would constitute an important tool for the production of recombinant proteins and livestock improvement.
Collapse
Affiliation(s)
- Pedro N Moreira
- Mouse Biology Unit, EMBL Monterotondo, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015, Monterotondo, Italy,
| | | |
Collapse
|
25
|
Meng L, Wan Y, Sun Y, Zhang Y, Wang Z, Song Y, Wang F. Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes. PLoS One 2013; 8:e77798. [PMID: 24204972 PMCID: PMC3813735 DOI: 10.1371/journal.pone.0077798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/04/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. METHODOLOGY/PRINCIPAL FINDINGS Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. CONCLUSIONS/SIGNIFICANCE In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future.
Collapse
Affiliation(s)
- Li Meng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yanyan Sun
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Yang Song
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Bordignon V, El-Beirouthi N, Gasperin BG, Albornoz MS, Martinez-Diaz MA, Schneider C, Laurin D, Zadworny D, Agellon LB. Production of cloned pigs with targeted attenuation of gene expression. PLoS One 2013; 8:e64613. [PMID: 23737990 PMCID: PMC3667777 DOI: 10.1371/journal.pone.0064613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to demonstrate that RNA interference (RNAi) and somatic cell nuclear transfer (SCNT) technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE), a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA) targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA) expression vector under the control of RNA polymerase III (U6) promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denyse Laurin
- Department of Animal Science, McGill University, Quebec, Canada
| | - David Zadworny
- Department of Animal Science, McGill University, Quebec, Canada
| | - Luis B. Agellon
- School of Dietetics and Human Nutrition, McGill University, Quebec, Canada
| |
Collapse
|
27
|
Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 2013; 13:43. [PMID: 23688045 PMCID: PMC3691671 DOI: 10.1186/1472-6750-13-43] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. RESULTS 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. CONCLUSION Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.
Collapse
Affiliation(s)
- Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Ludwig Geistlinger
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Annegret Wuensch
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Anne Richter
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Andrea Baehr
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katrin Kraehe
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Katinka Burkhardt
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Krzysztof Flisikowski
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tatiana Flisikowska
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Claudia Merkl
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Martina Landmann
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Marina Durkovic
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Alexander Tschukes
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Simone Kraner
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Dirk Schindelhauer
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Tobias Petri
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Alexander Kind
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kawasaki, Japan
| | - Angelika Schnieke
- Livestock Biotechnology, Center of Life and Food Sciences Weihenstephan, TU Munich, Freising, Germany
| | - Ralf Zimmer
- Practical Informatics and Bioinformatics, Institute for Informatics, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Sim BW, Cha JJ, Song BS, Kim JS, Yoon SB, Choi SA, Jeong KJ, Kim YH, Huh JW, Lee SR, Kim SH, Lee CS, Kim SU, Chang KT. Efficient production of transgenic mice by intracytoplasmic injection of streptolysin-O-treated spermatozoa. Mol Reprod Dev 2013; 80:233-41. [PMID: 23359330 DOI: 10.1002/mrd.22158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/22/2013] [Indexed: 02/03/2023]
Abstract
Many methods for efficient production of transgenic animals for biomedical research have been developed. Despite great improvements in transgenesis rates resulting from the use of intracytoplasmic sperm injection (ICSI), the ICSI-based sperm-mediated gene-transfer (iSMGT) technique is still not optimal in terms of sperm permeabilization efficiency and subsequent development. Here, we demonstrate that streptolysin-O (SLO) can efficiently permeabilize mouse spermatozoa, leading to improved developmental competence and high transgenesis rates in iSMGT embryos and pups. In particular, the most efficient production of iSMGT-transgenic embryos resulted from pretreatment with 5 U/ml SLO for 30 min and co-incubation with 1.0 ng/µl of an EGFP expression vector. By incubating spermatozoa with Cy-3-labelled DNA, we found that fluorescence intensity was prominently detected in the head region of SLO-treated spermatozoa. In addition, blastocyst development rate and blastomere survival were greatly improved by iSMGT using SLO-treated spermatozoa (iSMGT-SLO) as compared to freeze-thawed spermatozoa. Consistent with this, a high proportion of transgenic offspring was obtained by iSMGT-SLO after transfer into foster mothers, reaching 10.6% of the number of oocytes used (42.3% among pups). Together with successful germline transmission of transgenes in all founders analyzed, our data strongly suggest that SLO makes spermatozoa amenable to exogenous DNA uptake, and that the iSMGT-SLO technique is an efficient method for production of transgenic animals for biomedical research.
Collapse
Affiliation(s)
- Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 2013; 22:913-24. [PMID: 23417791 DOI: 10.1007/s11248-013-9693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.
Collapse
|
30
|
Richter A, Kurome M, Kessler B, Zakhartchenko V, Klymiuk N, Nagashima H, Wolf E, Wuensch A. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol 2012; 12:84. [PMID: 23140586 PMCID: PMC3537537 DOI: 10.1186/1472-6750-12-84] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/04/2012] [Indexed: 12/26/2022] Open
Abstract
Background Somatic cell nuclear transfer (SCNT) is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs) as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs) and porcine ear fibroblasts (PEFs) could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.
Collapse
Affiliation(s)
- Anne Richter
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Oddi S, Bernabò N, Di Tommaso M, Angelucci CB, Bisicchia E, Mattioli M, Maccarrone M. DNA uptake in swine sperm: Effect of plasmid topology and methyl-beta-cyclodextrin-mediated cholesterol depletion. Mol Reprod Dev 2012; 79:853-60. [DOI: 10.1002/mrd.22124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/08/2012] [Indexed: 11/09/2022]
|
32
|
Galli C, Lagutina I, Perota A, Colleoni S, Duchi R, Lucchini F, Lazzari G. Somatic cell nuclear transfer and transgenesis in large animals: current and future insights. Reprod Domest Anim 2012; 47 Suppl 3:2-11. [PMID: 22681293 DOI: 10.1111/j.1439-0531.2012.02045.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.
Collapse
Affiliation(s)
- C Galli
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sandra O, Mansouri-Attia N, Lea RG. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod Fertil Dev 2012; 24:68-79. [PMID: 22394719 DOI: 10.1071/rd11908] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
34
|
Yanagimachi R. Fertilization studies and assisted fertilization in mammals: their development and future. J Reprod Dev 2012; 58:25-32. [PMID: 22450281 DOI: 10.1262/jrd.11-015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of mammalian fertilization progressed very slowly in the beginning because of difficulties in obtaining a large quantity of fully mature eggs at one time. With progression of techniques to collect and handle eggs and spermatozoa, research in mammalian fertilization advanced rapidly. Today, far more papers are published on mammalian gametes and fertilization than those of all other animals combined. The development of assisted fertilization and related technologies revolutionized basic research as well as human reproductive medicine and animal husbandry. Reproduction is fundamental to human and animal lives. The author lists a few subjects of his personal interest for further development of basic and applied research of gametes and fertilization. Each reader will probably have more exciting subjects of future investigation.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
35
|
Chen Y, Niu Y, Ji W. Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genomics 2012; 39:247-51. [PMID: 22749011 DOI: 10.1016/j.jgg.2012.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 11/25/2022]
Abstract
Nonhuman primates (NHPs) provide powerful experimental models to study human development, cognitive functions and disturbances as well as complex behavior, because of their genetic and physiological similarities to humans. Therefore, NHPs are appropriate models for the study of human diseases, such as neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases, which occur as a result of genetic mutations. However, such diseases afflicting humans do not occur naturally in NHPs. So transgenic NHPs need to be established to understand the etiology of disease pathology and pathogenesis. Compared to rodent genetic models, the generation of transgenic NHPs for human diseases is inefficient, and only a transgenic monkey model for Huntington's disease has been reported. This review focuses on potential approaches and contributing factors for generating transgenic NHPs to study human diseases.
Collapse
Affiliation(s)
- Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | | | | |
Collapse
|
36
|
Abstract
Producing complex recombinant proteins in the milk of transgenic animals offers several advantages: large amounts of proteins can be obtained, and in most cases, these proteins are properly folded, assembled, cleaved, and glycosylated. The level of expression of foreign genes in the mammalian gland cannot be predicted in all cases, and appropriate vectors must be used. The main elements of these vectors are as follows: a well-characterized specific promoter, the coding region of the gene of interest, preferably with a homologous or heterologous intron, to improve transcription efficiency, and an insulator or boundary element to counteract the chromosomal position effects at the integration site. Once high expression levels are achieved, and the recombinant protein is purified, an essential step in the analysis of the final product is determining its degree of glycosylation. This is an important readout because it can affect among other parameters the stability and immunogenicity of the recombinant protein.
Collapse
|
37
|
Vajta G, Callesen H. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs. Theriogenology 2012; 77:1263-74. [DOI: 10.1016/j.theriogenology.2011.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
|
38
|
Niemann H, Kuhla B, Flachowsky G. Perspectives for feed-efficient animal production1. J Anim Sci 2011; 89:4344-63. [DOI: 10.2527/jas.2011-4235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
39
|
|
40
|
Wang H, Zhang J, Zhao M, Zhang X, Sun Q, Chen D. Production and health assessment of second-generation cloned Holstein cows derived by somatic cell nuclear transfer. Anim Reprod Sci 2011; 126:11-8. [DOI: 10.1016/j.anireprosci.2011.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
41
|
Flachowsky G. Carbon-footprints for food of animal origin, reduction potentials and research need. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2011.570047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Mukhopadhyay C, Mathur J. Prospects and Ethical Concerns of Embryonic Stem Cells Research-A Review. Vet World 2011. [DOI: 10.5455/vetworld.4.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
43
|
Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, Chen S, Dandro A, Boone J, Jobst P, Vance A, Wertz N, Polejaeva I, Butler J, Dai Y, Ayares D, Wells K. Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res 2010; 20:643-53. [PMID: 20872247 DOI: 10.1007/s11248-010-9445-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (-/-) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ -/- pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.
Collapse
Affiliation(s)
- J Ramsoondar
- Revivicor, Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Canovas S, Gutierrez-Adan A, Gadea J. Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Mol Reprod Dev 2010; 77:687-98. [DOI: 10.1002/mrd.21205] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Houdebine LM. Design of expression cassettes for the generation of transgenic animals (including insulators). Methods Mol Biol 2010; 597:55-69. [PMID: 20013225 DOI: 10.1007/978-1-60327-389-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of transgenesis is relatively rare in rats, and this is because of the relative difficulty in adding foreign genes by the conventional methods. Gene knock out and knock in by the conventional techniques of homologous recombination remain difficult in rats. This situation would be less crucial if the gene constructs were more reliable for the expression of foreign genes. The present chapter describes the state of the art in vector design for various genetic modifications in rats.
Collapse
Affiliation(s)
- Louis-Marie Houdebine
- Département de Physiologie Animale, Institut National de la Recherche Agronomique, Nouzilly, France
| |
Collapse
|
46
|
Liposome-mediated uptake of exogenous DNA by equine spermatozoa and applications in sperm-mediated gene transfer. Equine Vet J 2010; 40:76-82. [DOI: 10.2746/042516407x235786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Res 2009; 19:549-56. [PMID: 19862638 DOI: 10.1007/s11248-009-9333-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/06/2009] [Indexed: 01/01/2023]
Abstract
Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.
Collapse
|
48
|
Zi XD, Chen SW, Liang GN, Chen DW, Zhang DW, Yin RH. The Effect of Retroviral Vector on Uptake of Human Lactoferrin DNA by Yak (Bos Grunniens) Spermatozoa and their FertilizabilityIn Vitro. Anim Biotechnol 2009; 20:247-51. [DOI: 10.1080/10495390903196455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Li C, Mizutani E, Ono T, Wakayama T. An efficient method for generating transgenic mice using NaOH-treated spermatozoa. Biol Reprod 2009; 82:331-40. [PMID: 19812303 DOI: 10.1095/biolreprod.109.078501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transgenic (Tg) animals are widely used in researching the characteristics of exogenous genes. Intracytoplasmic sperm injection (ICSI)-mediated transgenesis (ICSI-Tr) has been a useful method for generating Tg animals, especially in the mouse. However, the original methods using freeze-thawed spermatozoa showed severe chromosomal damage and low offspring rates after embryo transfer. Herein, we describe an improved method to generate Tg mice efficiently using a simple pretreatment of spermatozoa with 10 mM NaOH. These spermatozoa lost their plasma membrane and tail, while still maintaining nuclear integrity. Sperm heads were mixed with 0.5-5 ng/microl of the transgene for enhanced green fluorescent protein (EGFP) for 3 min to 1 h at room temperature and were then microinjected into oocytes by ICSI. The best results were obtained when treated spermatozoa were incubated with 2 ng/microl of EGFP for 10 min; 55.6% of injected embryos developed to the blastocyst stage, and more than half (56.9%) of them displayed EGFP fluorescence. Under these conditions, 12 pups of 34 offspring were positive for the transgene after transfer at the 2-cell stage into pseudopregnant recipient mice (a high rate [10.2%] from manipulated embryos). This method was found to be suitable for hybrid and inbred strains of mouse such as C57BL/6 and 129X1/Sv. Thus, a simple sperm pretreatment with NaOH before ICSI-Tr resulted in an efficient insertion of an exogenous gene into the host genome. This method allows for easy production of Tg mice, requiring fewer oocytes for micromanipulation than classical methods.
Collapse
Affiliation(s)
- Chong Li
- Laboratory for Genomic Reprogramming, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | | | | | |
Collapse
|
50
|
Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol 2009; 29:859-69. [PMID: 19263215 DOI: 10.1007/s10571-009-9367-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/11/2009] [Indexed: 12/30/2022]
Abstract
The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best "functionally" characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.
Collapse
Affiliation(s)
- Ondrej Bugos
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, 845 10 Bratislava, Slovak Republic
| | | | | |
Collapse
|