1
|
Satrio FA, Karja NWK, Setiadi MA, Kaiin EM, Pardede BP, Purwantara B. Age-dependent variations in proteomic characteristics of spermatozoa in Simmental bull. Front Vet Sci 2024; 11:1393706. [PMID: 39183752 PMCID: PMC11343614 DOI: 10.3389/fvets.2024.1393706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 08/27/2024] Open
Abstract
Increasing the age of bulls results in a decrease in reproductive function, including a reduction in sperm quality, which plays a vital role in determining the fertility of bulls. Through a proteomic approach, this research aims to analyze the influence of age factors on various proteomes contained in bull sperm. Frozen semen samples from Simmental Bulls were categorized into three age groups: two, four, and ≥10 years old. Subsequently, the post-thaw sperm cells obtained were separated based on molecular weight using 1D-SDS-PAGE. Peptides extracted from the bands produced in each age group were subjected to LC-MS/MS analysis. A total of 72 protein types were identified, with 45 being detected in the 4-year-old group and 41 expressed in both the 2 and ≥10-year-old groups. The results provided insights into proteins' role in sperm metabolism across all age groups. Specifically, the 2-year-old group exhibited the expression of proteins associated with acrosome assembly and spermatid development (SPACA1). In contrast, those in the 4-year-old group were linked to motility (PEBP4) and sperm decapacitation factor (PEBP1). Proteins expressed in the 2 and -year-old groups were discovered to be involved in fertilization processes (TEX101). In contrast, the ≥10-year-old age group was associated with hyperactive movement related to capacitation (Tubulin). In conclusion, age influenced the differences observed in the proteomic profile of post-thaw Simmental bull sperm using the 1D-SDS-PAGE tandem LC-MS/MS approach.
Collapse
Affiliation(s)
- Faisal Amri Satrio
- Veterinary Medicine Study Program, Faculty of Medicine, Padjadjaran University, West Java, Bandung, Indonesia
| | - Ni Wayan Kurniani Karja
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, West Java, Bogor, Indonesia
| | - Mohamad Agus Setiadi
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, West Java, Bogor, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), West Java, Bogor, Indonesia
| | - Berlin Pandapotan Pardede
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), West Java, Bogor, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, West Java, Bogor, Indonesia
| |
Collapse
|
2
|
Jiang W, Mooney MH, Shirali M. Unveiling the Genetic Landscape of Feed Efficiency in Holstein Dairy Cows: Insights into Heritability, Genetic Markers, and Pathways via Meta-Analysis. J Anim Sci 2024; 102:skae040. [PMID: 38354297 PMCID: PMC10957122 DOI: 10.1093/jas/skae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.
Collapse
Affiliation(s)
- Wentao Jiang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| |
Collapse
|
3
|
de Souza LP, Domingues WB, Blödorn EB, da Silva Nunes L, Ortiz HG, Komninou ER, Campos VF. Expression of sperm microRNAs related to bull fertility: A systematic review. Res Vet Sci 2024; 166:105077. [PMID: 37948882 DOI: 10.1016/j.rvsc.2023.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
In this study we proposed to address the following question: "Are there differentially expressed sperm microRNAs related to fertility in bulls?". A systematic review of scientific literature until November 2022 was performed, in accordance with PRISMA guidelines. The main outcome was differentially expressed sperm microRNA from bulls with low versus high fertility profiles identified by using different methods such as field fertility evaluation and sperm laboratory analysis. Were identified 786 documents, of which 13 were selected for qualitative analysis. A total of 182 unique differentially expressed miRNAs were identified, among these, 49 miRNAs were found in common between at least two studies. It is believed that from these 49 miRNAs, it is possible that miRNAs such as miR-10a, -10b, -103, -15b, -122, -125b, -126-5p, -151-5p, -193a-5p, -196a, -27a-5p and -99b could be potential universal biomarkers to assess the reproductive potential of males.
Collapse
Affiliation(s)
- Lucas Petitemberte de Souza
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro da Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Hadassa Gabriela Ortiz
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Dewry RK, Mohanty TK, Nath S, Bhakat M, Yadav HP, Baithalu RK. Comparative RNA isolation methods from fresh ejaculated spermatozoa in Sahiwal cattle ( Bos indicus) and Murrah buffalo ( Bubalus bubalis) bulls for high quality and enhanced RNA yield. Anim Biotechnol 2023; 34:5180-5191. [PMID: 37965764 DOI: 10.1080/10495398.2023.2276713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sperm mRNA transcriptional profiling can be used to evaluate the fertility of breeding bulls. The aim of the study was to compare the modified RNA isolation methods for higher RNA yield and quality from freshly ejaculated sperm of cattle and buffalo bulls. Ten fresh ejaculates from each Sahiwal (n = 10 bulls × 10 ejaculates) and Murrah bulls (n = 10 bulls x 10 ejaculates) were used for RNA isolation. From the recovered live sperm, total sperm RNA was isolated by conventional methods (TRIzol, Double TRIzol), membrane-based methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) and Kit (RNeasy mini) methods in fresh semen. Among different isolation methods; the membrane-based modified methods combined with TRIzol (RNeasy + TRIzol) with the addition of β-mercaptoethanol (BME) resulted significantly (p < .05) higher total RNA quantity (300-340 ng/µL) and better purity in different concentrations of spermatozoa viz., 30-40 million, 70-80 million and 300-400 million sperm. The study concluded that the inclusion of BME to the combined membrane-based methods with somatic cell lysis buffer solution was best for constant increased yield and purity of RNA isolation from Sahiwal cattle and Murrah buffalo bull sperm.
Collapse
Affiliation(s)
- Raju Kumar Dewry
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Tushar Kumar Mohanty
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Sapna Nath
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Hanuman Prasad Yadav
- Artificial Breeding Research Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| | - Rubina Kumari Baithalu
- Reproductive Biotechnology Laboratory ICAR-National Dairy Research Institute (Deemed University), Karnal, India
| |
Collapse
|
5
|
Turner KA, Achinger L, Kong D, Kluczynski DF, Fishman EL, Phillips A, Saltzman B, Loncarek J, Harstine BR, Avidor-Reiss T. Abnormal centriolar biomarker ratios correlate with unexplained bull artificial insemination subfertility: a pilot study. Sci Rep 2023; 13:18338. [PMID: 37884598 PMCID: PMC10603076 DOI: 10.1038/s41598-023-45162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The mechanisms underlying male infertility are poorly understood. Most mammalian spermatozoa have two centrioles: the typical barrel-shaped proximal centriole (PC) and the atypical fan-like distal centriole (DC) connected to the axoneme (Ax). These structures are essential for fertility. However, the relationship between centriole quality and subfertility (reduced fertility) is not well established. Here, we tested the hypothesis that assessing sperm centriole quality can identify cattle subfertility. By comparing sperm from 25 fertile and 6 subfertile bulls, all with normal semen analyses, we found that unexplained subfertility and lower sire conception rates (pregnancy rate from artificial insemination in cattle) correlate with abnormal centriolar biomarker distribution. Fluorescence-based Ratiometric Analysis of Sperm Centrioles (FRAC) found only four fertile bulls (4/25, 16%) had positive FRAC tests (having one or more mean FRAC ratios outside of the distribution range in a group's high-quality sperm population), whereas all of the subfertile bulls (6/6, 100%) had positive FRAC tests (P = 0.00008). The most sensitive biomarker was acetylated tubulin, which had a novel labeling pattern between the DC and Ax. These data suggest that FRAC and acetylated tubulin labeling can identify bull subfertility that remains undetected by current methods and may provide insight into a novel mechanism of subfertility.
Collapse
Affiliation(s)
- Katerina A Turner
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Luke Achinger
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | - Derek F Kluczynski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Emily Lillian Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Audrey Phillips
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA
| | - Barbara Saltzman
- Department of Population Health, College of Health and Human Services, University of Toledo, Toledo, OH, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Frederick, MD, USA
| | | | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, 3050 W. Towerview Blvd, Toledo, OH, 43606, USA.
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
6
|
Paukszto Ł, Wiśniewska J, Liszewska E, Majewska M, Jastrzębski J, Jankowski J, Ciereszko A, Słowińska M. Specific expression of alternatively spliced genes in the turkey (Meleagris gallopavo) reproductive tract revealed their function in spermatogenesis and post-testicular sperm maturation. Poult Sci 2023; 102:102484. [PMID: 36709584 PMCID: PMC9922982 DOI: 10.1016/j.psj.2023.102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
The tissue-specific profile of alternatively spliced genes (ASGs) and their involvement in reproduction processes characteristic of turkey testis, epididymis, and ductus deferens were investigated for the first time in birds. Deep sequencing of male turkey reproductive tissue RNA samples (n = 6) was performed using Illumina RNA-Seq with 2 independent methods, rMATs and SUPPA2, for differential alternative splicing (DAS) event prediction. The expression of selected ASGs was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. The testis was found to be the site of the highest number of posttranscriptional splicing events within the reproductive tract, and skipping exons were the most frequently occurring class of alternative splicing (AS) among the reproductive tract. Statistical analysis revealed 86, 229, and 6 DAS events in the testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparison, respectively. Alternative splicing was found to be a mechanism of gene expression regulation within the turkey reproduction tract. In testis, modification was observed for spermatogenesis specific genes; the changes in 5' UTR could act as regulator of MEIG1 expression (a player during spermatocytes meiosis), and modification of 3' UTR led to diversification of CREM mRNA (modulator of gene expression related to the structuring of mature spermatozoa). Sperm tail formation can be regulated by changes in the 5' UTR of testicular SLC9A3R1 and gene silencing by producing dysfunctional variants of ODF2 in the testis and ATP1B3 in the epididymis. Predicted differentially ASGs in the turkey reproductive tract seem to be involved in the regulation of spermatogenesis, including acrosome formation and sperm tail formation and binding of sperm to the zona pellucida. Several ASGs were classified as cilia by actin and microtubule cytoskeleton organization. Such genes may play a role in the organization of sperm flagellum and post-testicular motility development. To our knowledge, this is the first functional investigation of alternatively spliced genes associated with tissue-specific processes in the turkey reproductive tract.
Collapse
Affiliation(s)
- Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum; University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland.
| |
Collapse
|
7
|
Indriastuti R, Pardede BP, Gunawan A, Ulum MF, Arifiantini RI, Purwantara B. Sperm Transcriptome Analysis Accurately Reveals Male Fertility Potential in Livestock. Animals (Basel) 2022; 12:2955. [PMID: 36359078 PMCID: PMC9657999 DOI: 10.3390/ani12212955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Nowadays, selection of superior male candidates in livestock as a source of frozen semen based on sperm quality at the cellular level is not considered accurate enough for predicting the potential of male fertility. Sperm transcriptome analysis approaches, such as messenger RNA levels, have been shown to correlate with fertility rates. Using this technology in livestock growth has become the principal method, which can be widely applied to predict male fertility potential in the livestock industry through the analysis of the sperm transcriptome. It provides the gene expression to validate the function of sperm in spermatogenesis, fertilization, and embryo development, as the parameters of male fertility. This review proposes a transcriptomic analysis approach as a high-throughput method to predict the fertility potential of livestock more accurately in the future.
Collapse
Affiliation(s)
- Rhesti Indriastuti
- Reproductive Biology Study Program, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
- Tuah Sakato Technology and Resource Development Center, Department of Animal Husbandry and Animal Health of West Sumatra, Payakumbuh 26229, Indonesia
| | - Berlin Pandapotan Pardede
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| | - Bambang Purwantara
- Department of Veterinary Clinic, Reproduction, and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
8
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
9
|
Moradi MH, Mahmodi R, Farahani AHK, Karimi MO. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds. Sci Rep 2022; 12:14286. [PMID: 35996004 PMCID: PMC9395407 DOI: 10.1038/s41598-022-18571-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Roqiah Mahmodi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | | | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Herat University, Herat, Afghanistan
| |
Collapse
|
10
|
Gan J, Gu T, Hong L, Cai G. Ferroptosis-related genes involved in animal reproduction: An Overview. Theriogenology 2022; 184:92-99. [DOI: 10.1016/j.theriogenology.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
|
11
|
Griffin RA, Swegen A, Baker MA, Ogle RA, Smith N, Aitken RJ, Skerrett-Byrne DA, Fair S, Gibb Z. Proteomic analysis of spermatozoa reveals caseins play a pivotal role in preventing short-term periods of subfertility in stallions. Biol Reprod 2022; 106:741-755. [DOI: 10.1093/biolre/ioab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Stallions experience transient fluctuations in fertility throughout the breeding season. Considering pregnancy diagnoses cannot be ascertained until ~14 days post-breeding, the timely detection of decreases in stallion fertility would enhance industry economic and welfare outcomes. Therefore, this study aimed to identify the proteomic signatures reflective of short-term fertility fluctuations, and to determine the biological mechanisms governing such differences. Using LC–MS/MS, we compared the proteomic profile of semen samples collected from commercially “fertile” stallions, during high- and low-fertility periods. A total of 1702 proteins were identified, of which, 38 showed a significant change in abundance (p ≤ 0.05). Assessment of intra- and inter-stallion variability revealed that caseins (namely κ-, α-S1-, and α-S2-casein), were significantly more abundant during “high-fertility” periods, while several epididymal, and seminal plasma proteins (chiefly, epididymal sperm binding protein 1 [ELSPbP1], horse seminal plasma protein 1 [HSP-1] and clusterin), were significantly more abundant during “low-fertility” periods. We hypothesised that an increased abundance of caseins offers greater protection from potentially harmful seminal plasma proteins, thereby preserving cell functionality and fertility. In vitro exposure of spermatozoa to casein resulted in decreased levels of lipid scrambling (Merocyanine 540), higher abundance of sperm-bound caseins (α-S1-, α-S2-, and κ-casein), and lower abundance of sperm-bound HSP-1 (p ≤ 0.05). This study demonstrates key pathways governing short-term fertility fluctuations in the stallion, thereby providing a platform to develop robust, fertility assessment strategies into the future.
Collapse
Affiliation(s)
- Róisín Ann Griffin
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Rachel Ann Ogle
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Nathan Smith
- Analytical and Biomedical Research Facility, Research Division, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - David Anthony Skerrett-Byrne
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New South Wales, Australia
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
12
|
Deng Q, Wang Z, Du Y, Zhang Y, Liang H. Transcriptional regulation of PEBP1 expression by androgen receptor in mouse testes. Syst Biol Reprod Med 2021; 68:70-79. [PMID: 34894936 DOI: 10.1080/19396368.2021.2004471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Androgen and AR are essential for maintaining spermatogenesis and male fertility. Previous studies have shown that the phosphatidyl ethanolamine binding protein 1 (Pebp1) gene is down-regulated in the selective ablation of the AR in the Sertoli cells of mouse testes compared with wild-type mice, indicating that Pebp1 is a candidate target of AR. The ChIP-PCR data and ChIP-sequencing results of this study verified that Pebp1 is a target gene regulated by AR. Real-time PCR, Western blot analysis, and immunofluorescence data showed that Pebp1 is expressed at all stages of testicular development, with an increasing trend from 1 to 8 weeks of postnatal development. PEBP1 was principally located in the cytoplasm, and high-intensity fluorescence revealed PEBP in the lumen of the testicular tubules. Bioinformatics analysis indicated effective androgen-responsive elements (AREs) located in the promotor of Pepb1 gene. Dual fluorescence assay data showed that androgens and AR could bind to the AREs of Pebp1 and induce an increase of gene expression. These data suggest that Pepb1 is a newfound target gene regulated by androgens and AR in mouse Sertoli cells. However, the detailed molecular mechanism of their role in spermatogenesis still needs to be further studied.Abbreviations: AR: androgen receptor; Pebp1: phosphatidyl ethanolamine binding protein 1; ARKO: androgen receptor knockout; WT: wild type; SCARKO: Sertoli cell-selective androgen receptor knockout; ChIP: chromatin immunoprecipitation; RKIP: Raf kinase inhibitory protein; MAPK: mitogen-activated protein kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; GSK-3: glycogen synthase kinase-3; RT-PCR: reverse transcriptase polymerase chain reaction; SEM: standard error of the mean.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China.,Central Laboratory, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China
| | - Ye Du
- Central Laboratory, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China
| | - Ying Zhang
- Department of Urology, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Shenzhen Longhua People's Hospital, Southern Medical University 518109, Guangdong, China
| |
Collapse
|
13
|
CRISP protein expression in semen of the endangered Malayan tapir (Tapirus indicus). Theriogenology 2021; 172:106-115. [PMID: 34153566 DOI: 10.1016/j.theriogenology.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 11/20/2022]
Abstract
The Malayan tapir is a large endangered herbivore native to South-east Asia with fewer than 2500 animals remaining in the wild. Although a small number of animals (183 animals held by 60 institutions) are managed in zoos and breeding centres, there is limited information on the fundamental reproductive biology of this species. The purpose of this present study was to evaluate the associations of reproductive protein biomarkers (CRISP2 and CRISP3) in the seminal plasma and spermatozoa with reproductive characteristics in male Malayan tapirs. Ejaculates were collected from zoo-housed animals by electroejaculation and assessed for sperm motility and quality traits. Seminal plasma and sperm pellets were analysed for CRISP protein expression by immunoblotting. The reproductive tract of a single animal was also analysed for CRISP2 and CRISP3 protein expression and localization by immunohistochemistry. Our results showed that both CRISP2 and CRISP3 are expressed in the seminal plasma and spermatozoa derived from Malayan tapirs. CRISP expression was positively correlated with semen quality, especially ejaculate volume, number of motile sperm, and acrosomal integrity. In addition, CRISP2 and CRISP3 protein expression were slightly high in males that had recently sired an offspring. The results suggest that CRISP proteins may serve as biomarkers for ejaculate quality and fertility in male Malayan tapirs. These findings may have significant implications for planning future breeding and re-introduction efforts for this species.
Collapse
|
14
|
A comparative analysis of the intrauterine transcriptome in fertile and subfertile mares using cytobrush sampling. BMC Genomics 2021; 22:377. [PMID: 34022808 PMCID: PMC8141133 DOI: 10.1186/s12864-021-07701-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background Subfertility is a major problem in modern horse breeding. Especially, mares without clinical signs of reproductive diseases, without known uterine pathogens and no evidence of inflammation but not becoming pregnant after several breeding attempts are challenging for veterinarians. To obtain new insights into the cause of these fertility problems and aiming at improving diagnosis of subfertile mares, a comparative analysis of the intrauterine transcriptome in subfertile and fertile mares was performed. Uterine cytobrush samples were collected during estrus from 57 mares without clinical signs of uterine diseases. RNA was extracted from the cytobrush samples and samples from 11 selected subfertile and 11 fertile mares were used for Illumina RNA-sequencing. Results The cytobrush sampling was a suitable technique to isolate enough RNA of high quality for transcriptome analysis. Comparing subfertile and fertile mares, 114 differentially expressed genes (FDR = 10%) were identified. Metascape enrichment analysis revealed that genes with lower mRNA levels in subfertile mares were related to ‘extracellular matrix (ECM)’, ‘ECM-receptor interaction’, ‘focal adhesion’, ‘immune response’ and ‘cytosolic calcium ion concentration’, while DEGs with higher levels in subfertile mares were enriched for ‘monocarboxyl acid transmembrane transport activity’ and ‘protein targeting’. Conclusion Our study revealed significant differences in the uterine transcriptome between fertile and subfertile mares and provides leads for potential uterine molecular biomarkers of subfertility in the mare. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07701-3.
Collapse
|
15
|
Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front Cell Dev Biol 2021; 9:647717. [PMID: 34041237 PMCID: PMC8141864 DOI: 10.3389/fcell.2021.647717] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Crossbred bulls produced by crossing Bos taurus and Bos indicus suffer with high incidence of infertility/subfertility problems; however, the etiology remains poorly understood. The uncertain predictability and the inability of semen evaluation techniques to maintain constant correlation with fertility demand for alternate methods for bull fertility prediction. Therefore, in this study, the global differential gene expression between high- and low-fertile crossbred bull sperm was assessed using a high-throughput RNA sequencing technique with the aim to identify transcripts associated with crossbred bull fertility. Crossbred bull sperm contained transcripts for 13,563 genes, in which 2,093 were unique to high-fertile and 5,454 were unique to low-fertile bulls. After normalization of data, a total of 776 transcripts were detected, in which 84 and 168 transcripts were unique to high-fertile and low-fertile bulls, respectively. A total of 176 transcripts were upregulated (fold change > 1) and 209 were downregulated (<1) in low-fertile bulls. Gene ontology analysis identified that the sperm transcripts involved in the oxidative phosphorylation pathway and biological process such as multicellular organism development, spermatogenesis, and in utero embryonic development were downregulated in low-fertile crossbred bull sperm. Sperm transcripts upregulated and unique to low-fertile bulls were majorly involved in translation (biological process) and ribosomal pathway. With the use of RT-qPCR, selected sperm transcripts (n = 12) were validated in crossbred bulls (n = 12) with different fertility ratings and found that the transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes was significantly (p < 0.05) lower in low-fertile bulls than high-fertile bulls and was positively (p < 0.05) correlated with conception rate. It is inferred that impaired oxidative phosphorylation could be the predominant reason for low fertility in crossbred bulls and that transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes could serve as potential biomarkers for fertility in crossbred bulls.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR), National Dairy Research Institute, Karnal, India
| |
Collapse
|
16
|
Gao F, Wang P, Wang K, Fan Y, Chen Y, Chen Y, Ye C, Feng M, Li L, Zhang S, Wei H. Investigation Into the Relationship Between Sperm Cysteine-Rich Secretory Protein 2 (CRISP2) and Sperm Fertilizing Ability and Fertility of Boars. Front Vet Sci 2021; 8:653413. [PMID: 33996980 PMCID: PMC8119884 DOI: 10.3389/fvets.2021.653413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
The proteins in the seminal plasma and on the sperm surface play important roles in sperm function and numerous reproductive processes. The cysteine-rich secretory proteins (CRISPs) are enriched biasedly in the male reproductive tract of mammals, and CRISP2 is the sole member of CRISPs produced during spermatogenesis; whereas the role of CRISP2 in fertilization and its association with fertility of boars are still unclear. This study aimed to investigate the relationship between the sperm CRISP2 and boar fertility, and explore its impact sperm fertilizing ability. The levels of CRISP2 protein in sperm were quantified by ELISA; correlation analysis was performed to evaluate the association between CRISP2 protein levels and boar reproductive parameters. Meanwhile, the expression of CRISP2 in boar reproductive organs and sperm, and the effects of CRISP2 on in vitro fertilization (IVF) were examined. The results showed that boars with high sperm levels of CRISP2 had high fertility. The protein levels of CRISP2 in sperm were positively correlated with the litter size (r = 0.412, p = 0.026), the number of live-born piglets (r = 0.421, p = 0.023) and the qualified piglets per litter (r = 0.381, p = 0.042). CRISP2 is specifically expressed in the testis and sperm of adult boars, and its location on sperm changed mainly from the post-acrosomal region to the apical segment of acrosome during capacitation. The cleavage rate was significantly decreased by adding the anti-CRISP2 antibody to the IVF medium, which indicates CRISP2 plays a critical role in fertilization. In conclusion, CRISP2 protein is specifically expressed in the adult testis and sperm and is associated with sperm fertilizing ability and boar fertility. Further mechanistic studies are warranted, in order to fully decipher the role of CRISP2 in the boar reproduction.
Collapse
Affiliation(s)
- Fenglei Gao
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Department of Tropical Agriculture and Forestry, College of Guangdong Agriculture Industry Business Polytechnic, Guangzhou, China
| | - Ping Wang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yushan Fan
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuming Chen
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yun Chen
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chao Ye
- Technology Department, Guangdong Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Meiying Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Li Li
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxi Wei
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
O'Callaghan E, Sánchez JM, McDonald M, Kelly AK, Hamdi M, Maicas C, Fair S, Kenny DA, Lonergan P. Sire contribution to fertilization failure and early embryo survival in cattle. J Dairy Sci 2021; 104:7262-7271. [PMID: 33714587 DOI: 10.3168/jds.2020-19900] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Despite passing routine laboratory tests of semen quality, bulls used in artificial insemination (AI) exhibit a significant range in field fertility. The objective of this study was to determine whether subfertility in AI bulls is due to issues of sperm transport to the site of fertilization, fertilization failure, or failure of early embryo or conceptus development. In experiment 1, Holstein-Friesian bulls (3 high fertility, HF, and 3 low fertility, LF) were selected from the national population of AI bulls based on adjusted fertility scores from a minimum of 500 inseminations (HF: +4.37% and LF: -12.7%; mean = 0%). Superovulated beef heifers were blocked based on estimated number of follicles at the time of AI and inseminated with semen from HF or LF bulls (n = 3-4 heifers per bull; total 19 heifers). Following slaughter 7 d later, the number of corpora lutea was counted and the uteri were flushed. Recovered structures (oocytes/embryos) were classified according to developmental stage and stained with 4',6-diamidino-2-phenylindole to assess number of cells and accessory sperm. Overall recovery rate (total structures recovered/total corpora lutea) was 52.6% and was not different between groups. Mean (± standard error of the mean) number of embryos recovered per recipient was 8.7 ± 5.2 and 9.4 ± 5.5 for HF and LF, respectively. Overall fertilization rate of recovered structures was not different between groups. However, more embryos were at advanced stages of development (all blastocyst stages combined), reflected in a greater mean embryo cell number on d 7 for HF versus LF bulls. Number of accessory sperm was greater for embryos derived from HF than for LF bulls. The aim of experiment 2 was to evaluate the effect of sire fertility on survival of bovine embryos to d 15. Day 7 blastocysts were produced in vitro using semen from the same HF (n = 3) and LF (n = 3) bulls and transferred in groups of 5-10 to synchronized heifers (n = 7 heifers per bull; total 42 heifers). Conceptus recovery rate on d 15 was higher in HF (59.4%,) versus LF (45.0%). Mean length of recovered conceptuses for HF bulls was not affected by fertility status. In conclusion, while differences in field fertility among AI sires used in this study were not reflected in fertilization rate, differences in embryo quality were apparent as early as d 7. These differences likely contributed to the higher proportion of conceptuses surviving to d 15 in HF bulls.
Collapse
Affiliation(s)
- E O'Callaghan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - J M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - M McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - A K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - M Hamdi
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - C Maicas
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5
| | - S Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland V94 PT85
| | - D A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Meath, Ireland C15 PW93
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 N2E5.
| |
Collapse
|
18
|
Saraf KK, Kumaresan A, Sinha MK, Datta TK. Spermatozoal transcripts associated with oxidative stress and mitochondrial membrane potential differ between high- and low-fertile crossbred bulls. Andrologia 2021; 53:e14029. [PMID: 33665828 DOI: 10.1111/and.14029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
The presence of various forms of RNAs having roles in fertilisation and early embryonic development is well documented in mammalian spermatozoa. In the present study, using Agilent microarray platform, we compared sperm mRNA expression profiles between high- and low-fertile crossbred bulls with normal semen parameters. Microarray data acquisition and analysis were performed using GeneSpring GX version software, wherein spermatozoa from high-fertile bulls were kept as control while spermatozoa from low-fertile bulls were considered as treatment group. A total of 6,238 transcripts were detected in crossbred bull spermatozoa; 559 transcripts (>1.5-fold) were differentially regulated between high- and low-fertile bulls. Functional annotation has categorised these transcripts into biological process, cellular, and molecular functions. It was observed that transcripts associated with oxidation reduction process (p = .003), mitochondrial membrane potential (p = .03), were significantly down-regulated while transcripts associated with apoptosis (p = .04) were up-regulated in low-fertile spermatozoa. The dysregulated genes were involved in important cellular pathways including oxidative phosphorylation (p = .002), oestrogen signalling (p = .002), Wnt signalling (p = .035), cGMP-PKG signalling (p = .007) and MAPK signalling (p = .032) pathways. Collectively, the present study discovered profound discrepancies in sperm mRNA expression between high- and low-fertile crossbred bulls, with potential possibilities for their use in fertility prediction.
Collapse
Affiliation(s)
- Kaustubh Kishor Saraf
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
19
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
20
|
Selvaraju S, Swathi D, Ramya L, Lavanya M, Archana SS, Sivaram M. Orchestrating the expression levels of sperm mRNAs reveals CCDC174 as an important determinant of semen quality and bull fertility. Syst Biol Reprod Med 2020; 67:89-101. [PMID: 33190538 DOI: 10.1080/19396368.2020.1836286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bulls with acceptable semen quality vary in actual field fertility and this can be elucidated by studying the expression levels of mRNAs in the sperm. The present study aimed at assessing the variations in the sperm gene expression levels of PRM1, CCDC174, RPL36A, TMCO2, SWI5 and OIT3 in bulls differing in fertility status. Frozen semen samples from Holstein-Friesian bulls were classified into high-fertile (n = 8, average field conception rate = 46.1 ± 0.51, p < 0.001) and sub-fertile (n = 7, average field conception rate = 39.4 ± 0.69) groups. In the post-thaw semen samples, sperm kinematics, structural and functional membrane integrities, mitochondrial membrane potential and chromatin distribution were analyzed. The sperm total RNA was subjected to gene expression studies by Real-Time PCR. Multivariate regression analysis was performed using gene expression levels and conception rates. The sperm functional attributes did not differ significantly between the groups. The relative mRNA levels (fold change) of CCDC174 (6.20), RPL36A (4.66), SWI5 (1.86) and OIT3 (1.53) were higher in high-fertile bulls. Further, the expression level of the CCDC174 gene was significantly (p = 0.02) up-regulated in high-fertile bulls. The fertility prediction multivariate model with genes, CCDC174, RPL36A, TMCO2 and OIT3 had the maximum coefficient of determination (R2 = 0.68) with the field conception rate. This model had 93.3% bull fertility prediction accuracy with 100% sensitivity and 87.5% specificity. The study suggests that the expression level of CCDC174 can be used as a potential marker for assessing bull fertility.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Maharajan Lavanya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India.,Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, Bareilly-243122, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Muniandy Sivaram
- Southern Regional Station, ICAR-National Dairy Research Institute, Bengaluru-560030, India
| |
Collapse
|
21
|
Rather HA, Kumaresan A, Nag P, Kumar V, Nayak S, Batra V, Ganaie BA, Baithalu RK, Mohanty TK, Datta TK. Spermatozoa produced during winter are superior in terms of phenotypic characteristics and oviduct explants binding ability in the water buffalo (Bubalus bubalis). Reprod Domest Anim 2020; 55:1629-1637. [PMID: 32945545 DOI: 10.1111/rda.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023]
Abstract
Although reduced reproductive efficiency during summer has been well documented in buffaloes, the reason for the same is yet to be understood. The present study was conducted to identify the subtle differences in sperm phenotypic characteristics (motility, membrane integrity, acrosome reaction and lipid peroxidation status), oviduct binding ability and expression of fertility-associated genes (AK 1, ATP5D, CatSper 1, Cytochrome P450 aromatase, SPP1 and PEBP1) between winter and summer seasons in buffaloes. Cryopreserved spermatozoa from 6 Murrah buffalo bulls (3 ejaculates/bull/season) were utilized for the study. Real-time quantitative PCR was performed for assessing the expression patterns of select fertility-associated genes. The proportion of motile and membrane intact spermatozoa was significantly higher (p < .05) in winter as compared to summer ejaculates. The proportion of moribund and lipid peroxidized spermatozoa was significantly lower (p < .05) in winter ejaculates as compared to summer. The sperm-oviduct binding index was significantly lower (p < .01) when spermatozoa from summer ejaculates were used as compared to winter ejaculates. The expression of fertility-associated genes did not differ significantly between the two seasons except for PEPB1; the transcriptional abundance of PEPB1 was significantly (p < .05) lower in summer as compared to winter season. It was inferred that buffalo spermatozoa produced during winter season were superior in terms of cryotolerance, membrane and acrosome integrity, lipid peroxidation status and the ability to bind with oviduct explants.
Collapse
Affiliation(s)
- Haneef Ahmad Rather
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Pradeep Nag
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vimlesh Kumar
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Bilal Ahmad Ganaie
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Rubina K Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
22
|
Jannatifar R, Parivar K, Hayati Roodbari N, Nasr-Esfahani MH. The Effect of N-Acetyl-Cysteine on NRF2 Antioxidant Gene Expression in Asthenoteratozoospermia Men: A Clinical Trial Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:171-175. [PMID: 33098382 PMCID: PMC7604699 DOI: 10.22074/ijfs.2020.44411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
Background One of the important factor associated with male infertility is high production of reactive oxygen species (ROS).
The main function of Nuclear factor erythroid 2-related factor 2 (NRF2) is to activate the cellular anti-
oxidant response by inducing the transcription of a wide array of genes that can combat the harmful effects of factors
such as oxidative stress. The purpose of this study was to evaluate the effect of N-acetyl-L-cysteine (NAC), as an
antioxidant drug, on NRF2 Gene Expression in Asthenoteratozoospermia Men. Materials and Methods In this randomized, blinded clinical trial study, included 50 infertile men with asthenoteratozoo-
spermia, who received NAC (600 mg, three times daily). Sperm parameters analyzed according to the world health organiza-
tion (WHO; 2010). Sperm DNA fragmentation, relative NRF2 expression, and seminal plasma level of antioxidant enzymes
were measured by TUNEL assay, reverse transcription polymerase chain reaction (RT-PCR) and ELISA test, respectively.
Results After NAC treatment, findings showed a significant increase in sperm concentration and motility compared
to pre-treatment status, whereas the percentage of abnormal morphology and DNA fragmentation was significantly
decreased (P<0.05). A significant improvement in expression of NRF2 gene and antioxidant enzyme levels were ob-
served compared to pre-treatment by NAC (P<0.05). Significant correlations were observed between NRF2 mRNA
expression level, specific sperm parameters and level of antioxidant enzymes (P<0.05). Conclusion The results demonstrated that NAC oral supplementation protected against oxidative stress by enhancing
NRF2 expression. This could improve semen parameters quality parameters in asthenoteratozoospermia men (Regis-
tration number: IRCT20170830035998N4).
Collapse
Affiliation(s)
- Rahil Jannatifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic Address: .,Isfahan Fertility and Infertility Centre, Isfahan, Iran
| |
Collapse
|
23
|
Daigneault BW. Dynamics of paternal contributions to early embryo development in large animals. Biol Reprod 2020; 104:274-281. [PMID: 32997138 DOI: 10.1093/biolre/ioaa182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022] Open
Abstract
This review focuses on current knowledge of paternal contributions to preimplantation embryonic development with particular emphasis on large animals. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include functional molecular and genomic studies across large domestic animals in context with reference to founding experimental models.
Collapse
|
24
|
Long JA. The ‘omics’ revolution: Use of genomic, transcriptomic, proteomic and metabolomic tools to predict male reproductive traits that impact fertility in livestock and poultry. Anim Reprod Sci 2020; 220:106354. [DOI: 10.1016/j.anireprosci.2020.106354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
|
25
|
Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim Genet 2020; 51:502-510. [PMID: 32323873 DOI: 10.1111/age.12941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Predicting bull fertility prior to breeding is a current challenge for the dairy industry. The use of molecular biomarkers has been previously assessed. However, the integration of this information has not been performed to extract biologically relevant markers. The goal of this study was to integrate DNA methylation data with previously published RNA-sequencing results in order to identify candidate markers for sire fertility. A total of 1765 differentially methylated cytosines were found between high- and low-fertility sires. Ten genes associated with 11 differentially methylated cytosines were found in a previous study of gene expression between high- and low-fertility sires. Additionally, two of these genes code for proteins found exclusively in bull seminal plasma. Collectively, our results reveal 10 genes that could be used in the future as a panel for predicting bull fertility.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
26
|
Gholami D, Salman Yazdi R, Jami MS, Ghasemi S, Sadighi Gilani MA, Sadeghinia S, Teimori H. The expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and miR-582-5p in seminal plasma fluid and spermatozoa of infertile men. Gene 2019; 730:144261. [PMID: 31778754 DOI: 10.1016/j.gene.2019.144261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/19/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Cysteine-Rich Secretory Protein 2 (CRISP2) plays an important role in the morphology and motion of male ejaculated spermatozoa. The association of its expression with some miRNAs is also well known. The aim of this study was to determine the expression of CRISP2 and mir-582 in the seminal plasma fluid and spermatozoa of three groups of infertile men and the possible association of their expressions. In this experimental study, the expression of CRISP2 in seminal plasma fluid and spermatozoa of 17 men with asthenozoospermia, 15 men with teratozoospermia, 17 men with teratoasthenozoospermia, and 18 infertile individuals with normozoospermia were measured using western blotting. Then by using bioinformatics studies, miR-582-5p was nominated as a CRISP2-associated miRNA, and its expression was evaluated by means of Real-Time PCR. Comparison of expression of CRISP2 and miRNA-582 in the studied groups was analyzed by t-test and Mann-Whitney U test. The expression of CRISP2 showed a significant reduction in the spermatozoa and seminal plasma fluid of all three groups, (p < 0.05). MiR-582-5p expression significantly increased in teratozoospermia patients (<0.05), and significantly decreased in teratoasthenozoospermia patients (p < 0.05). Meanwhile, changes in the expression of miR-582-5p in teratoasthenozoospermia individuals was associated with a decrease in the expression of CRISP2, which could represent the potential role of miR-582-5p in regulation of CRISP2 expression in teratoasthenozoospermia individuals.
Collapse
Affiliation(s)
- Delnya Gholami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Salman Yazdi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shaghayegh Sadeghinia
- College of Medical Veterinary and Life Sciences School of Molecular Cell and Systems Biology, University of Glasgow, Scotland
| | - Hossien Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
27
|
Kasimanickam R, Kasimanickam V, Arangasamy A, Kastelic J. Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology 2019; 126:41-48. [DOI: 10.1016/j.theriogenology.2018.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/13/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
28
|
Arangasamy A, Venkata Krishnaiah M, Manohar N, Selvaraju S, Guvvala PR, Soren NM, Reddy IJ, Roy KS, Ravindra JP. Advancement of puberty and enhancement of seminal characteristics by supplementation of trace minerals to bucks. Theriogenology 2018; 110:182-191. [PMID: 29407900 DOI: 10.1016/j.theriogenology.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 11/30/2022]
Abstract
Attainment of puberty in animals is dependent on their age, body weight, nutritional status, genetic and environmental conditions. Nutritionally, organic minerals are suggested to improve semen production, sperm motility and male fertility. In this context, role of organic zinc (Zn) and copper (Cu) in advancing male puberty and semen characters in Osmanabadi goats were studied. Forty one (n = 41) bucks (Aged 5 months) were divided into ten groups and the dietary treatments comprised of a control group (basal diet; without additional trace mineral supplementation) and nine treatment groups that received, in addition to the basal diet, various doses of trace minerals (mg) on per kg dry matter basis, organic Zn as low Zn20, medium Zn40 and high Zn60, organic Cu as low Cu12.5, medium Cu25, high Cu37.5 and combination of organic Zn + Cu as low Zn20 + Cu12.5, medium Zn40 + Cu25, high Zn60 + Cu37.5, respectively fed for a period of 8 months. Bucks fed organic trace minerals reached puberty 28-35 days earlier than control group. In addition, improvement (P < .01) in testosterone hormone (ng/ml) levels (control: 1.63 ± 0.07 VS Zn60: 2.54 ± 0.02; Cu12.5: 6.17 ± 0.05; Cu25: 3.01 ± 0.04; Cu37.5: 2.39 ± 0.06; Zn20 + Cu12.5: 1.94 ± 0.02; Zn60 + Cu37.5: 2.44 ± 0.16 at 240 days), semen production capacity (sperm concentration, volume, mass motility) and semen quality (higher progressive motility, velocity, sperm membrane integrity and acrosome integrity) were observed in supplemented groups (P < .05) than the control bucks. The present study demonstrated that, additional feeding of organic Zn and Cu to growing male goats advanced onset of puberty and improved quantitative and qualitative semen characteristics. The results also implied that the organic Cu had a significant effect on overall performances of bucks as compared to Zn alone or Zn and Cu in combination.
Collapse
Affiliation(s)
- A Arangasamy
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India.
| | - M Venkata Krishnaiah
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - N Manohar
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - S Selvaraju
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - P R Guvvala
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - N M Soren
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - I J Reddy
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - K S Roy
- Bioenergetics and Environmental Sciences Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - J P Ravindra
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| |
Collapse
|
29
|
Arangasamy A, Sharma RB, Hemalatha K, Venkata Krishnaiah M, Selvaraju S, Pushpa Rani G, Binsila BK, Soren NM, Reddy IJ, Ravindra JP, Bhatta R. Relationship of organic mineral supplementation and spermatozoa/white blood cells mRNA in goats. Anim Reprod Sci 2018; 197:296-304. [PMID: 30195944 DOI: 10.1016/j.anireprosci.2018.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 01/10/2023]
Abstract
The antioxidant properties and the protective role of organic zinc (Zn) and copper (Cu) in white blood cells (WBCs) and spermatozoa were analyzed through quantification of superoxide dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 4 (GPx4) and nuclear factor erythroid 2-like 2 (NFE2L2) and correlations were determined with sperm functional characteristics in Osmanabadi bucks. Bucks (aged 5 months; n = 40) were divided into ten groups, and the dietary treatments comprised of a control and nine treatment groups as follows: organic Zn as Zn 20, Zn 40 and Zn 60, organic Cu as Cu 12.5, Cu 25, Cu 37.5 and combined organic Zn and Cu as Zn 20+Cu 12.5, Zn 40+Cu 25, Zn 60+Cu 37.5, respectively per kg dry matter for a period of 8 months. The blood (120 and 240 days) and semen (240 days: 40 × 4 = 160) samples were collected from 40 bucks. In WBCs: the relative abundance of mRNA for SOD1, CAT, GPx4, NFE2L2 was greater (P < 0.05) in (120 and 240 days) in majority of the mineral supplemented animals. In spermatozoa: the relative abundance of SOD1, NFE2L2, GPx4 and CAT mRNA was greater (P < 0.05) in selected treatment groups. The abundance of SOD1 mRNA in WBCs was positively correlated (P < 0.05) with sperm mass motility (r = 0.692, P = 0.027). The abundance of GPx4 mRNA was negatively correlated (P < 0.05) with type A sperm (straightness; STR) > 85% and amplitude of lateral head displacement (ALH) > 2.5 μm/ s) (r = -0.711, P = 0.021) and (P < 0.05) positively correlated with sperm viability (r = 0.669, P = 0.035). Organic Zn and Cu supplementation was associated with an increase in the expression of antioxidant defense enzyme genes in bucks.
Collapse
Affiliation(s)
- A Arangasamy
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India.
| | - Renu Balkrishan Sharma
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - K Hemalatha
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - M Venkata Krishnaiah
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - S Selvaraju
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - G Pushpa Rani
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - B K Binsila
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - N M Soren
- Animal Nutrition Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - I J Reddy
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - J P Ravindra
- Animal Physiology Division, Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| | - Raghavendra Bhatta
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology (NIANP), Bengaluru, Karnataka 560030, India
| |
Collapse
|
30
|
Hemalatha K, Arangasamy A, Selvaraju S, Krishnaiah MV, Rani G, Mishra A, Soren N, Reddy I, Ravindra J. Effect of dietary supplementation of organic zinc and copper on in vitro semen fertility in goat. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Selvaraju S, Parthipan S, Somashekar L, Binsila BK, Kolte AP, Arangasamy A, Ravindra JP, Krawetz SA. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst Biol Reprod Med 2018. [DOI: 10.1080/19396368.2018.1444816] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Atul P. Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
32
|
Li P, Guo W, Yue H, Li C, Du H, Qiao X, Liu Z, Zhou Q, Wei Q. Variability in the protein profiles in spermatozoa of two sturgeon species. PLoS One 2017; 12:e0186003. [PMID: 29077704 PMCID: PMC5659609 DOI: 10.1371/journal.pone.0186003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
Conventional sperm analysis (i.e., motility and fertility) has been used to evaluate sperm quality. Understanding the quality of sperm on the molecular level in the sturgeons, Acipenser baerii and A. schrenckii, is essential for the improvement of the conservation of genetic resources and farming performance. In this study, we used the iTRAQ proteomics approach to perform proteomic profiling of spermatozoa associated with sperm quality in sturgeons (Data are available via ProteomeXchange with identifier PXD006108). The results showed 291 and 359 differentially expressed proteins in A. baerii and A. schrenckii, respectively, of which 72 were common to both species and all were upregulated in high quality compared with low quality samples. The differentially expressed proteins were mainly categorized into the generation of precursor metabolites and energy and oxidation, and they were localized to the mitochondria. Three distinguishing pathways, Arginine and proline metabolism, Pyruvate metabolism and the Citrate cycle (TCA cycle) were found to play an important role in energy metabolism, and some substrates could be used in the sperm medium for storage and cryopreservation. The quantity levels of two proteins, CKMT1 and LDHB, were verified by western blot analysis. Moreover, other potential biomarkers involved in oxidation reduction, ubiquitin-proteasome-dependent proteolysis, chaperones and binding activity were also discussed. Our study is the first to use the iTRAQ-based proteomics approach to analyse the sturgeon spermatozoa proteome, and the results that we obtained are valuable for the prediction of sperm quality and reproduction management in these threatened species.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší, Vodňany, Czech Republic
| | - Wei Guo
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší, Vodňany, Czech Republic
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xinmei Qiao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhigang Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiong Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Zhou JH, Zhou QZ, Yang JK, Lyu XM, Bian J, Guo WB, Chen ZJ, Xia M, Xia H, Qi T, Li X, Liu CD. MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients. Asian J Androl 2017; 19:591-595. [PMID: 27517483 PMCID: PMC5566855 DOI: 10.4103/1008-682x.185001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 12/28/2022] Open
Abstract
Cysteine-rich secretory protein 2 (CRISP2) is an important protein in spermatozoa that plays roles in modulating sperm flagellar motility, the acrosome reaction, and gamete fusion. Spermatozoa lacking CRISP2 exhibit low sperm motility and abnormal morphology. However, the molecular mechanisms underlying the reduction of CRISP2 in asthenoteratozoospermia (ATZ) remain unknown. In this study, low expression of CRISP2 protein rather than its mRNA was observed in the ejaculated spermatozoa from ATZ patients as compared with normozoospermic males. Subsequently, bioinformatic prediction, luciferase reporter assays, and microRNA-27a (miR-27a) transfection experiments revealed that miR-27a specifically targets CRISP2 by binding to its 3' untranslated region (3'-UTR), suppressing CRISP2 expression posttranscriptionally. Further evidence was provided by the clinical observation of high miR-27a expression in ejaculated spermatozoa from ATZ patients and a negative correlation between miR-27a expression and CRISP2 protein expression. Finally, a retrospective follow-up study supported that both high miR-27a expression and low CRISP2 protein expression were associated with low progressive sperm motility, abnormal morphology, and infertility. This study demonstrates a novel mechanism responsible for reduced CRISP2 expression in ATZ, which may offer a potential therapeutic target for treating male infertility, or for male contraception.
Collapse
Affiliation(s)
- Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao-Ming Lyu
- Laboratory Medical Center, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zi-Jian Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Tao Qi
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017; 18:280. [PMID: 28381255 PMCID: PMC5382486 DOI: 10.1186/s12864-017-3673-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/31/2017] [Indexed: 11/12/2022] Open
Abstract
Background Infertility in dairy cattle is a concern where reduced fertilization rates and high embryonic loss are contributing factors. Studies of the paternal contribution to reproductive performance are limited. However, recent discoveries have shown that, in addition to DNA, sperm delivers transcription factors and epigenetic components that are required for fertilization and proper embryonic development. Hence, characterization of the paternal contribution at the time of fertilization is warranted. We hypothesized that sire fertility is associated with differences in DNA methylation patterns in sperm and that the embryonic transcriptomic profiles are influenced by the fertility status of the bull. Embryos were generated in vitro by fertilization with either a high or low fertility Holstein bull. Blastocysts derived from each high and low fertility bulls were evaluated for morphology, development, and transcriptomic analysis using RNA-Sequencing. Additionally, DNA methylation signatures of sperm from high and low fertility sires were characterized by performing whole-genome DNA methylation binding domain sequencing. Results Embryo morphology and developmental capacity did not differ between embryos generated from either a high or low fertility bull. However, RNA-Sequencing revealed 98 genes to be differentially expressed at a false discovery rate < 1%. A total of 65 genes were upregulated in high fertility bull derived embryos, and 33 genes were upregulated in low fertility derived embryos. Expression of the genes CYCS, EEA1, SLC16A7, MEPCE, and TFB2M was validated in three new pairs of biological replicates of embryos. The role of the differentially expressed gene TFB2M in embryonic development was further assessed through expression knockdown at the zygotic stage, which resulted in decreased development to the blastocyst stage. Assessment of the epigenetic signature of spermatozoa between high and low fertility bulls revealed 76 differentially methylated regions. Conclusions Despite similar morphology and development to the blastocyst stage, preimplantation embryos derived from high and low fertility bulls displayed significant transcriptomic differences. The relationship between the paternal contribution and the embryonic transcriptome is unclear, although differences in methylated regions were identified which could influence the reprogramming of the early embryo. Further characterization of paternal factors delivered to the oocyte could lead to the identification of biomarkers for better selection of sires to improve reproductive efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3673-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenna Kropp
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - José A Carrillo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Hadjer Namous
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alyssa Daniels
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sana M Salih
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, 53792, USA.,Present address: Department of Obstetrics and Gynecology, West Virginia University, Morgantown, WV, 26508, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
35
|
Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; 7:42392. [PMID: 28276431 PMCID: PMC5343582 DOI: 10.1038/srep42392] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian spermatozoa deliver various classes of RNAs to the oocyte during fertilization, and many of them may regulate fertility. The objective of the present study was to determine the composition and abundance of spermatozoal transcripts in fresh bull semen. The entire transcriptome of the spermatozoa from bulls (n = 3) was sequenced using two different platforms (Ion Proton and Illumina) to identify the maximum number of genes present in the spermatozoa. The bovine spermatozoa contained transcripts for 13,833 genes (transcripts per million, TPM > 10). Both intact and fragmented transcripts were found. These spermatozoal transcripts were associated with various stages of spermatogenesis, spermatozoal function, fertilization, and embryo development. The presence of intact transcripts of pregnancy-associated glycoproteins (PAGs) in the spermatozoa suggest a possible influence of sperm transcripts beyond early embryonic development. The specific regions (exon, intron, and exon-intron) of the particular spermatozoal transcripts might help regulate fertilization. This study demonstrates that the use of two different RNA-seq platforms provides a comprehensive profile of bovine spermatozoal RNA. Spermatozoal RNA profiling may be useful as a non-invasive method to delineate possible causes of male infertility and to predict fertility in a manner that is more effective than the conventional methods.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - B Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR- National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru-560030, India
| |
Collapse
|
36
|
Card CJ, Krieger KE, Kaproth M, Sartini BL. Oligo-dT selected spermatozoal transcript profiles differ among higher and lower fertility dairy sires. Anim Reprod Sci 2017; 177:105-123. [PMID: 28081858 DOI: 10.1016/j.anireprosci.2016.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 01/12/2023]
Abstract
Spermatozoal messenger RNA (mRNA) has the potential as a molecular marker for sire fertility because this population can reflect gene expression that occurred during spermatogenesis and may have a functional role in early embryonic development. The goal of this study was to compare the oligo-dT selected spermatozoal transcript profiles of higher fertility (Conception Rate (CR) 1.8-3.5) and lower fertility (CR -2.9 to -0.4) sires using Ribonucleic Acid Sequencing (RNA-Seq). A total of 3227 transcripts and 5366 transcripts were identified in the higher and lower fertility populations, respectively. While common transcripts between the two populations were identified (2422 transcripts), several transcripts were also unique to the fertility populations including 805 transcripts that were unique to the higher fertility population and 2944 transcripts that were unique to the lower fertility population. From gene ontological analysis, the transcripts unique to each fertility population differed in Biological Processes (BP), including enrichment of regulatory transcripts for growth and protein kinase activity in the higher fertility bulls. Biological variation in transcript presence among individual sires was also found. Of the candidate fertility spermatozoal transcripts chosen from the RNA-Seq population analysis reported here and previous publications, COX7C was negatively correlated with sire fertility. Using high-throughput sequencing, candidate spermatozoal transcripts were identified for further study as potential markers for sire fertility.
Collapse
Affiliation(s)
- C J Card
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston 02881, United States
| | - K E Krieger
- Genex Cooperative Inc., Shawano, WI 54166, United States
| | - M Kaproth
- Genex Cooperative Inc., Shawano, WI 54166, United States
| | - B L Sartini
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston 02881, United States.
| |
Collapse
|
37
|
Genome-wide association study for semen quality traits in German Warmblood stallions. Anim Reprod Sci 2016; 171:81-6. [DOI: 10.1016/j.anireprosci.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
|
38
|
Rajkumar K, Nichita A, Anoor PK, Raju S, Singh SS, Burgula S. Understanding perspectives of signalling mechanisms regulating PEBP1 function. Cell Biochem Funct 2016; 34:394-403. [PMID: 27385268 DOI: 10.1002/cbf.3198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein, belongs to PEBP family of proteins. It is known to interact with many proteins that are mainly involved in pathways that monitor cell proliferation and differentiation. PEBP1 in many cells interacts with several pathways, namely MAPK, GRK2, NF-кB, etc. that keeps the cell proliferation and differentiation in check. This protein is expressed by many cells in humans, including neurons where it is predominantly involved in production of choline acetyltransferase. Deregulated PEBP1 is known to cause cancer, diabetic nephropathy and neurodegenerative diseases like Alzheimer's and dementia. Recent research led to the discovery of many drugs that mainly target the interaction of PEBP1 with its partners. These compounds are known to bind PEBP1 in its conserved domain which abrogate its association with interacting partners in several different pathways. We outline here the latest developments in understanding of PEBP1 function in maintaining cell integrity. Copyright © 2016 John Wiley & Sons, Ltd. SIGNIFICANCE OF THE STUDY Phosphatidylethanolamine-binding protein is crucial in regulation of MAPK and PKC pathways. Its diverse roles, including regulating these pathways keep cell differentiation and proliferation in check. This review outlines some latest findings which greatly add to our current knowledge of phosphatidylethanolamine-binding protein.
Collapse
Affiliation(s)
- Karthik Rajkumar
- Department of Microbiology, Osmania University, Hyderabad, India
| | - Aare Nichita
- Department of Microbiology, Osmania University, Hyderabad, India
| | | | - Swathi Raju
- Department of Microbiology, Osmania University, Hyderabad, India
| | | | | |
Collapse
|
39
|
Singh RP, Shafeeque CM, Sharma SK, Singh R, Mohan J, Sastry KVH, Saxena VK, Azeez PA. Chicken sperm transcriptome profiling by microarray analysis. Genome 2015; 59:185-96. [PMID: 26868024 DOI: 10.1139/gen-2015-0106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been confirmed that mammalian sperm contain thousands of functional RNAs, and some of them have vital roles in fertilization and early embryonic development. Therefore, we attempted to characterize transcriptome of the sperm of fertile chickens using microarray analysis. Spermatozoal RNA was pooled from 10 fertile males and used for RNA preparation. Prior to performing the microarray, RNA quality was assessed using a bioanalyzer, and gDNA and somatic cell RNA contamination was assessed by CD4 and PTPRC gene amplification. The chicken sperm transcriptome was cross-examined by analysing sperm and testes RNA on a 4 × 44K chicken array, and results were verified by RT-PCR. Microarray analysis identified 21,639 predominantly nuclear-encoded transcripts in chicken sperm. The majority (66.55%) of the sperm transcripts were shared with the testes, while surprisingly, 33.45% transcripts were detected (raw signal intensity greater than 50) only in the sperm and not in the testes. The greatest proportion of up-regulated transcripts were responsible for signal transduction (63.20%) followed by embryonic development (56.76%) and cell structure (56.25%). Of the 20 most abundant transcripts, 18 remain uncharacterized, whereas the least abundant genes were mostly associated with the ribosome. These findings lay a foundation for more detailed investigations on sperm RNAs in chickens to identify sperm-based biomarkers for fertility.
Collapse
Affiliation(s)
- R P Singh
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - C M Shafeeque
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| | - S K Sharma
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - R Singh
- c Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - J Mohan
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - K V H Sastry
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - V K Saxena
- b Central Avian Research Institute, Izatnagar, 243122, India
| | - P A Azeez
- a Avian Physiology and Genetics Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty-641108, Coimbatore, India
| |
Collapse
|
40
|
Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 2015; 482:32-9. [DOI: 10.1016/j.ab.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
|
41
|
Zhou JH, Zhou QZ, Lyu XM, Zhu T, Chen ZJ, Chen MK, Xia H, Wang CY, Qi T, Li X, Liu CD. The Expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and Its Specific Regulator miR-27b in the Spermatozoa of Patients with Asthenozoospermia1. Biol Reprod 2015; 92:28. [DOI: 10.1095/biolreprod.114.124487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
42
|
Kropp J, Peñagaricano F, Salih S, Khatib H. Invited review: Genetic contributions underlying the development of preimplantation bovine embryos. J Dairy Sci 2014; 97:1187-201. [DOI: 10.3168/jds.2013-7244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/08/2013] [Indexed: 01/09/2023]
|
43
|
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013; 19:604-24. [PMID: 23856356 DOI: 10.1093/humupd/dmt031] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are known to act as epigenetic modifiers, inducing histone modifications and DNA methylation, perhaps playing a role in transgenerational epigenetic inherence. Transcript profiling holds considerable potential for the discovery of fertility biomarkers for both agriculture and human medicine. Comparing the differential RNA profiles of infertile and fertile individuals as well as assessing species similarities, should resolve the regulatory pathways contributing to male factor infertility. CONCLUSIONS Dad delivers a complex population of RNAs to the oocyte at fertilization that likely influences fertilization, embryo development, the phenotype of the offspring and possibly future generations. Development is continuing on the use of spermatozoal RNA profiles as phenotypic markers of male factor status for use as clinical diagnostics of the father's contribution to the birth of a healthy child.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
44
|
Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD, Chowdhary BP, Raudsepp T. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PLoS One 2013; 8:e56535. [PMID: 23409192 PMCID: PMC3569414 DOI: 10.1371/journal.pone.0056535] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/10/2013] [Indexed: 01/23/2023] Open
Abstract
Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively retained and functionally coherent collection of RNAs.
Collapse
Affiliation(s)
- Pranab J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Card CJ, Anderson EJ, Zamberlan S, Krieger KE, Kaproth M, Sartini BL. Cryopreserved Bovine Spermatozoal Transcript Profile as Revealed by High-Throughput Ribonucleic Acid Sequencing1. Biol Reprod 2013; 88:49. [DOI: 10.1095/biolreprod.112.103788] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
46
|
Simmons LW, Tan YF, Millar AH. Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating. INSECT MOLECULAR BIOLOGY 2013; 22:115-130. [PMID: 23211034 DOI: 10.1111/imb.12007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reproductive proteins are amongst the most evolutionarily divergent proteins known, and research on genetically well-characterized species suggests that postcopulatory sexual selection might be important in their evolution; however, we lack the taxonomic breadth of information on reproductive proteins that is required to determine the general importance of sexual selection for their evolution. We used transcriptome sequencing and proteomics to characterize the sperm and seminal fluid proteins of a cricket, Teleogryllus oceanicus, that has been widely used in the study of postcopulatory sexual selection. We identified 57 proteins from the sperm of these crickets. Many of these had predicted function in glycolysis and metabolism, or were structural, and had sequence similarity to sperm proteins found across taxa ranging from flies to humans. We identified 21 seminal fluid proteins, some of which resemble those found to be involved in postmating changes to female reproduction in other species. Some 27% of sperm proteins and 48% of seminal fluid proteins were of unknown function. The characterization of seminal fluid proteins in this species will allow us to explore their adaptive significance, and to contribute comparative data that will facilitate a general appreciation of the evolution of reproductive proteins within and among animal taxa.
Collapse
Affiliation(s)
- L W Simmons
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
47
|
Kasimanickam V, Kasimanickam R, Arangasamy A, Saberivand A, Stevenson J, Kastelic J. Association between mRNA abundance of functional sperm function proteins and fertility of Holstein bulls. Theriogenology 2012; 78:2007-2019.e2. [DOI: 10.1016/j.theriogenology.2012.07.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 10/27/2022]
|