1
|
Delimitreva SM, Boneva GV, Chakarova IV, Hadzhinesheva VP, Zhivkova RS, Markova MD, Nikolova VP, Kolarov AI, Mladenov NJ, Bradyanova SL, Tchorbanov AI. Defective oogenesis in mice with pristane-induced model of systemic lupus. J Reprod Immunol 2021; 148:103370. [PMID: 34492566 DOI: 10.1016/j.jri.2021.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease characterized by generation of autoantibodies and severe damage of various organs. The hormonal changes associated with pregnancy and especially estrogen might lead to damage of reproductive function and ovarian quality. We employed a pristane-induced lupus model of Balb/c mice which resembles human lupus in an attempt to follow oogenesis disruption during the disease progression. The integrity of cytoskeletal and chromatin structures was estimated in oocytes derived by hormonally stimulated ovulation in lupus mice and the results were compared with those from healthy mice. Chromatin, tubulin and actin structures in oocytes were detected by Hoechst 33258, anti-alpha-tubulin antibody and rhodamine-labeled phalloidin, respectively. All available meiotic spindles were analyzed - in immature (metaphase I) and mature oocytes (metaphase II). The total number of mature oocytes obtained from lupus mice was lower compared to healthy controls. The maturation rate was 9.8 % for lupus mice, 12.7 % for 7-month old controls, and 14.3 % for the young control mice (4 weeks old). Another major difference between the studied groups was the higher percentage of defective metaphase I spindles registered in oocytes derived from lupus mice (60 % normal spindles), while for the young and older controls this proportion was 86 % and 81 %, respectively. No such difference was registered for metaphase II spindles. For both metaphase I and metaphase II oocytes, the proportions of normal actin cap and chromosomal condensation were similar between the experimental groups.
Collapse
Affiliation(s)
| | - Gabriela V Boneva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Irina V Chakarova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | | | - Ralitsa S Zhivkova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Maya D Markova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Venera P Nikolova
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Anton I Kolarov
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Nikola J Mladenov
- Department of Biology, Medical University of Sofia, 1431, Sofia, Bulgaria
| | - Silviya L Bradyanova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria; National Institute of Immunology, 1517, Sofia, Bulgaria.
| |
Collapse
|
2
|
Sun J, Cui K, Li ZP, Gao B, Huang B, Liu Q, Shi D. Improved early development potence of in vitro fertilization embryos by treatment with tubacin increasing acetylated tubulin of matured porcine oocytes. Mech Dev 2020; 164:103631. [PMID: 32828904 DOI: 10.1016/j.mod.2020.103631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
To improve the developmental potential of in vitro embryos is a long-term concern field for human assisted reproduction and animal in vitro embryo production practice. In the current study, we examined the effects and mechanism of an HDAC6 inhibitor, tubacin, on the maturation of porcine oocytes and in vitro development of porcine IVF embryos. It has been demonstrated the effect of tubacin on the acetylation level of α-tubulin in porcine oocytes. As a result, the maturation rate of porcine oocytes was significantly improved (P < 0.05), and the following development potent of blastocysts forming rate was also significantly increased (P < 0.05). We found that the increased acetylation of α-tubulin significantly reduced the abnormal rate of microtubule, furthermore, the proportion of mitochondria in the vicinity of in vitro fertilization (IVF) nucleus was significantly enhanced in Metaphase I (MI) and Metaphase II (MII) stages. The expression levels of microtubule assembly genes (TUBA1A, αTAT1 and MAP2) significantly up-regulated in MI and MII stages. Together, these results suggest that treatment of porcine oocytes during maturation with tubacin could promote their IVF embryos developmental competence by altering spindle formation, mitochondrial concentration and genes expression patterns of matured porcine oocytes.
Collapse
Affiliation(s)
- JunMing Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi 530021, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| | - KuiQing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Zhi Peng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - BangJun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China
| | - QingYou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| | - DeShun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530005, China.
| |
Collapse
|
3
|
Yang KT, Inoue A, Lee YJ, Jiang CL, Lin FJ. Loss of Ikbkap/Elp1 in mouse oocytes causes spindle disorganization, developmental defects in preimplantation embryos and impaired female fertility. Sci Rep 2019; 9:18875. [PMID: 31827135 PMCID: PMC6906334 DOI: 10.1038/s41598-019-55090-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/23/2019] [Indexed: 01/08/2023] Open
Abstract
Elongator complexes are well known to be involved in a wide variety of cellular processes; however, their functions in mammalian oocytes have not been characterized. Here, we demonstrated in mice that specific deletion of one of the core subunits, Ikbkap/Elp1, in oocytes resulted in spindle defects and chromosome disorganization without affecting folliculogenesis. In accordance with these findings, we observed that Ikbkap mutant female mice are subfertile. Further analyses uncovered that kinetochore–microtubule attachments are severely compromised in Ikbkap-deficient oocytes. Moreover, we revealed that Ikbkap modulates the acetylation status of α-tubulin in oocytes, which may at least in part mediate the meiotic phenotypes described above by affecting microtubule dynamics and kinetochore function. Finally, we showed that embryos derived from Ikbkap-deficient oocytes exhibit an increased frequency of aneuploidy, digyny, progressive delays in preimplantation development, and severe degeneration before reaching the blastocyst stage. In summary, we identify Ikbkap as an important player in regulating oocyte meiosis by modulating tubulin acetylation for chromosome/spindle organization.
Collapse
Affiliation(s)
- Kuo-Tai Yang
- Department of Animal Science, National Pingtung University of Science and Technology, 91201, Pingtung, Taiwan
| | - Azusa Inoue
- Howard Hughes Medical Institute, Harvard Medical School, 02115, Boston, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yi-Jing Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan. .,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
4
|
A retrospective analysis of adverse effects of an in vivo fluoroquinolone antibiotic enrofloxacin treatment on oocyte quality in the common marmoset. Reprod Toxicol 2018; 75:86-95. [DOI: 10.1016/j.reprotox.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022]
|
5
|
Kanda A, Nobukiyo A, Yoshioka M, Hatakeyama T, Sotomaru Y. Quality of common marmoset (Callithrix jacchus) oocytes collected after ovarian stimulation. Theriogenology 2017; 106:221-226. [PMID: 29096269 DOI: 10.1016/j.theriogenology.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
Abstract
The common marmoset (Callithrix jacchus) is an experimental animal that is considered suitable for the creation of next-generation human disease models. It has recently been used in the reproductive technology field. Oocytes can be effectively collected from female marmosets via ovarian stimulation with injections of follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG). The oocytes, collected about 28 h after the hCG injection, include both premature oocytes and postmature (in vivo matured; IVO) oocytes, and the premature oocytes can be matured by in vitro culture (in vitro matured; IVM). Although IVM and IVO oocytes are equivalent in appearance at the MII stage, it remains unclear whether there are differences in their properties. Therefore, we investigated their in vitro fertilization and developmental capacities and cytoskeletal statuses. Our findings revealed that the IVM and IVO oocytes had similar fertilization rates but that no IVO oocytes could develop to the blastocyst stage. Additionally, IVO oocytes showed abnormal cytoskeletal formation. It is concluded that IVM oocytes maintain normal function, whereas IVO oocytes would be affected by aging and other factors when they remain for a long time in the ovary.
Collapse
Affiliation(s)
- Akifumi Kanda
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Asako Nobukiyo
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Miyuki Yoshioka
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Teruhiko Hatakeyama
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
6
|
Ruggeri E, DeLuca KF, Galli C, Lazzari G, DeLuca JG, Carnevale EM. Cytoskeletal alterations associated with donor age and culture interval for equine oocytes and potential zygotes that failed to cleave after intracytoplasmic sperm injection. Reprod Fertil Dev 2017; 27:944-56. [PMID: 25798646 DOI: 10.1071/rd14468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) is an established method to fertilise equine oocytes, but not all oocytes cleave after ICSI. The aims of the present study were to examine cytoskeleton patterns in oocytes after aging in vitro for 0, 24 or 48h (Experiment 1) and in potential zygotes that failed to cleave after ICSI of oocytes from donors of different ages (Experiment 2). Cytoplasmic multiasters were observed after oocyte aging for 48h (P<0.01). A similar increase in multiasters was observed with an increased interval after ICSI for young mares (9-13 years) but not old (20-25 years) mares. Actin vesicles were observed more frequently in sperm-injected oocytes from old than young mares. In the present study, multiasters appeared to be associated with cell aging, whereas actin vesicles were associated with aging of the oocyte donor.
Collapse
Affiliation(s)
- Elena Ruggeri
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523, USA
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523, USA
| | - Cesare Galli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di sopra, 50, 40064, Ozzano Emilia (Bologna), Italy
| | - Giovanna Lazzari
- Avantea srl, Laboratory of Reproductive Technologies, Via Porcellasco 7f, 26100 Cremona, Italy
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, 1870 Campus Delivery, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Nikolova V, Delimitreva S, Chakarova I, Zhivkova R, Hadzhinesheva V, Markova M. Dynamics of Lamins B and A/C and Nucleoporin Nup160 during Meiotic Maturation in Mouse Oocytes. Folia Biol (Praha) 2017; 63:6-12. [PMID: 28374669 DOI: 10.14712/fb2017063010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study was aimed at elucidating the fate of three important nuclear envelope components - lamins B and A/C and nucleoporin Nup160, during meiotic maturation of mouse oocytes. These proteins were localized by epifluorescence and confocal microscopy using specific antibodies in oocytes at different stages from prophase I (germinal vesicle) to metaphase II. In immature germinal vesicle oocytes, all three proteins were detected at the nuclear periphery. In metaphase I and metaphase II, lamin B co-localized with the meiotic spindle, lamin A/C was found in a diffuse halo surrounding the spindle and to a lesser degree throughout the cytoplasm, and Nup160 was concentrated to the spindle poles. To our knowledge, this is the first report on nucleoporin localization in mammalian oocytes and the first successful detection of lamins in mature oocytes. While the distribution patterns of both lamins closely paralleled the respective stages of mitosis, Nup160 localization in metaphase oocytes corresponded to that in mitotic prometaphase rather than metaphase. The peculiar distribution of this nucleoporin in oocytes may reflect its role in meiosis-specific mechanisms of spindle assembly and its regulation.
Collapse
Affiliation(s)
- V Nikolova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - S Delimitreva
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - I Chakarova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - R Zhivkova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - V Hadzhinesheva
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - M Markova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| |
Collapse
|
8
|
Connolly AA, Sugioka K, Chuang CH, Lowry JB, Bowerman B. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol 2015; 210:917-32. [PMID: 26370499 PMCID: PMC4576866 DOI: 10.1083/jcb.201412010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
KLP-7/MCAK regulates kinetochore–microtubule attachment and spindle tension to promote the coalescence of early spindle pole foci, which produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly in C. elegans. During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.
Collapse
Affiliation(s)
- Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Joshua B Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
9
|
A comparative analysis of spindle morphometrics across metazoans. Curr Biol 2015; 25:1542-50. [PMID: 26004761 DOI: 10.1016/j.cub.2015.04.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/21/2022]
Abstract
Cell division in all eukaryotes depends on function of the spindle, a microtubule-based structure that segregates chromosomes to generate daughter cells in mitosis or haploid gametes in meiosis. Spindle size adapts to changes in cell size and shape, which vary dramatically across species and within a multicellular organism, but the nature of scaling events and their underlying mechanisms are poorly understood. Cell size variations are most pronounced in early animal development, as egg diameters range from tens of microns up to millimeters across animal phyla, and decrease several orders of magnitude during rapid reductive divisions. During early embryogenesis in the model organisms X. laevis and C. elegans, the spindle scales with cell size [1, 2], a phenomenon regulated by molecules that modulate microtubule dynamics [3-6], as well as by limiting cytoplasmic volume [7, 8]. However, it is not known to what extent spindle scaling is conserved across organisms and among different cell types. Here we show that in a range of metazoan phyla, mitotic spindle length decreased with cell size across an ∼30-fold difference in zygote size. Maximum spindle length varied, but linear spindle scaling occurred similarly in all species once embryonic cell diameter reduced to 140 μm. In contrast, we find that the female meiotic spindle does not scale as closely to egg size, adopting a more uniform size across species that most likely reflects its specialized function. Our analysis reveals that spindle morphometrics change abruptly, within one cell cycle, at the transition from meiosis to mitosis in most animals.
Collapse
|
10
|
Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online 2013; 28:284-99. [PMID: 24444815 DOI: 10.1016/j.rbmo.2013.10.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022]
Abstract
Assisted reproduction technology (ART) has become an attractive option for infertility treatment and holds tremendous promise. However, at present, there is still room for improvement in its success rates. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. To better understand the mechanism underlying oocyte maturation and for the future improvement of assisted reproduction technology, this review focuses on the complex processes of cytoplasmic organelles and the dynamic alterations of the cytoskeleton that occur during oocyte maturation. Ovarian stimulation and in-vitro maturation are the major techniques used in assisted reproduction technology and their influence on the organelles of oocytes is also discussed. Since the first birth by assisted reproduction treatment was achieved in 1978, numerous techniques involved in assisted reproduction have been developed and have become attractive options for infertility treatment. However, the unsatisfactory success rate remains as a main challenge. Oocyte maturation is a process by which the oocyte becomes competent for fertilization and subsequent embryo development. Oocyte maturation includes both nuclear and cytoplasmic maturation. Nuclear maturation primarily involves chromosomal segregation, which has been well studied, whereas cytoplasmic maturation involves a series of complicated processes, and there are still many parts of this process that remain controversial. Ovarian stimulation and in-vitro maturation (IVM) are the major techniques of assisted reproduction. The effect of ovarian stimulation or IVM on the behaviour of cell organelles of the oocyte has been postulated as the reason for the reduced developmental potential of in-vitro-produced embryos. To further understanding of the mechanism of oocyte maturation and future improvement of assisted reproduction treatment, the complex events of cytoplasmic organelles and the cytoskeleton that occur during oocyte maturation and the influence of ovarian stimulation and IVM on these organelles are described in this review.
Collapse
|
11
|
Coticchio G, Guglielmo MC, Dal Canto M, Fadini R, Mignini Renzini M, De Ponti E, Brambillasca F, Albertini DF. Mechanistic foundations of the metaphase II spindle of human oocytes matured in vivo and in vitro. Hum Reprod 2013; 28:3271-82. [DOI: 10.1093/humrep/det381] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium. Theriogenology 2012; 78:1487-93. [DOI: 10.1016/j.theriogenology.2012.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
|