1
|
Marshall AF, Balloux F, Hemmings N, Brekke P. Systematic review of avian hatching failure and implications for conservation. Biol Rev Camb Philos Soc 2023; 98:807-832. [PMID: 36635252 DOI: 10.1111/brv.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Avian hatching failure is a widespread phenomenon, affecting around 10% of all eggs that are laid and not lost to predation, damage, or desertion. Our understanding of hatching failure is limited in terms of both its underpinning mechanisms and its occurrence across different populations. It is widely acknowledged that rates of hatching failure are higher in threatened species and in populations maintained in captivity compared to wild, non-threatened species, but these differences have rarely been quantified and any broader patterns remain unexplored. To examine the associations between threat status, management interventions, and hatching failure across populations we conducted a phylogenetically controlled multilevel meta-analysis across 231 studies and 241 species of birds. Our data set included both threatened (Critically Endangered, Endangered, and Vulnerable) and non-threatened (Near Threatened and Least Concern) species across wild and captive populations, as well as 'wild managed' ('free-living') populations. We found the mean overall rate of hatching failure across all populations to be 16.79%, with the hatching failure rate of wild, non-threatened species being 12.40%. We found that populations of threatened species experienced significantly higher mean hatching failure than populations of non-threatened species. Different levels of management were also associated with different rates of hatching failure, with wild populations experiencing the lowest rate of hatching failure, followed by wild managed populations, and populations in captivity experiencing the highest rate. Similarly, populations that were subject to the specific management interventions of artificial incubation, supplementary feeding, and artificial nest provision displayed significantly higher rates of hatching failure than populations without these interventions. The driver of this correlation between hatching failure and management remains unclear, but could be an indirect result of threatened species being more likely to have lower hatching success and also being more likely to be subject to management, indicating that conservation efforts are fittingly being focused towards the species potentially most at risk from extinction. This is the most comprehensive comparative analysis of avian hatching failure that has been conducted to date, and the first to quantify explicitly how threat status and management are associated with the rate of hatching failure in a population. We discuss the implications of our results, focusing on their potential applications to conservation. Although we identified several factors clearly associated with variation in hatching failure, a significant amount of heterogeneity was not explained by our meta-analytical model, indicating that other factors influencing hatching failure were not included here. We discuss what these factors might be and suggest avenues for further research. Finally, we discuss the inconsistency in how hatching failure is defined and reported within the literature, and propose a standardised definition to be used in future studies which will enable better comparison across populations and ensure that the most accurate information is used to support management decisions.
Collapse
Affiliation(s)
- Ashleigh F Marshall
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1 4RY, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - François Balloux
- UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Nicola Hemmings
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London, NW1 4RY, UK
| |
Collapse
|
2
|
Zhang Y, Wang L, Li J, Bao Q, Zhang Y, Chang G, Chen G. Association analysis of polymorphisms of candidate genes for laying traits in Yangzhou geese. Gene 2023; 862:147249. [PMID: 36738899 DOI: 10.1016/j.gene.2023.147249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Egg production is an important economic trait in the Chinese goose industry. Due to the low heritability of annual egg production traits in geese, large-scale individual selection based on annual egg production measurements cannot be carried out. Therefore, new selection methods must be applied for large-scale early selections. To screen for effective molecular markers for early Yangzhou geese selection, the genotypes and gene frequencies of mutated loci of five candidate genes related to egg production, MAGI-1, ACSF2, ASTN2, KIAA1462, and ARHGAP21, were detected and analyzed by PCR-direct sequencing.Furthermore, correlation analysis was performed with annual egg mass and body weight at the point of lay and egg weight, and the results were as follows:Magi-1 (Record-106975)was A > G, ACSF2 (Record-106582)was A > C, ASTN2 (Record-111407)was A > T, KIAA1462 (Record-134172)was A > T, and the base of ARHGAP21 (Record-112359) was G > T. At all the five loci above, the Yangzhou geese population followed the Hardy-Weinberg equilibrium (P > 0.05). The results of the association analysis between different genotypes and production performance showed no significant differences in annual egg production, body weight at the point of lay, and egg weight, among different genotypes (P > 0.05) at the mutation loci of MAGI-1 and ASTN2. At the ACSF2 and KIAA1462, the annual egg production of AC was significantly higher than that of AA and CC (P < 0.05), the annual egg production of TT was significantly higher than that of AA (P < 0.05), and there were no significant differences in body weight at the point of lay and egg weight, among the three genotypes (P > 0.05). At ARHGAP21, the body weight at the lay point of the TT genotype was the highest, which was significantly higher than that of GG (P < 0.05); however, there was no significant difference with the heterozygous GT genotype for this trait (P > 0.05). Therefore, Genotype AC at ACSF2 and genotype TT at KIAA1462 could be used as favorable genotypes for egg production, and genotype TT at ARHGAP21 could be used as a favorable genotype for weight in Yangzhou geese.
Collapse
Affiliation(s)
- Yang Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Laidi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Jijie Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiang Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Yong Zhang
- Yangzhou Tiange Goose Company Limited, Yangzhou, People's Republic of China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China.
| |
Collapse
|
3
|
Ma S, Li P, Liu H, Xi Y, Xu Q, Qi J, Wang J, Li L, Wang J, Hu J, He H, Han C, Bai L. Genome-wide association analysis of the primary feather growth traits of duck: identification of potential Loci for growth regulation. Poult Sci 2022; 102:102243. [PMID: 36334470 PMCID: PMC9636485 DOI: 10.1016/j.psj.2022.102243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,College of Animal Science, Xinjiang Agricultural University, P. R. China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, P. R. China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,Corresponding author:
| | - Yang Xi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Qian Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jingjing Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jianmei Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwen Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwei Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hua He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Lili Bai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| |
Collapse
|
4
|
Kanaka KK, Chatterjee RN, Kumar P, Bhushan B, Divya D, Bhattacharya TK. Cloning, characterisation and expression of the SERPINB14 gene, and association of promoter polymorphisms with egg quality traits in layer chicken. Br Poult Sci 2021; 62:783-794. [PMID: 34047227 DOI: 10.1080/00071668.2021.1934400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Ovalbumin (SERPINB14) is the most abundant protein present in egg white contributing about 54% of the total egg protein. In this study, the objectives were to clone and characterise the coding sequence of the SERPINB14 gene, to explore its expression profile, identify polymorphisms in the promoter of the gene and explore any association with egg quality traits in White Leghorn chickens.2. SNPs and mRNA expression of SERPINB14 in White Leghorn chicken lines were detected by PCR-single strand conformation polymorphism (SSCP) along with sequencing and qPCR. The open reading frame (ORF) was cloned in an expression plasmid vector and sequenced.3. The ORF of this gene was 1161 bp encoding a peptide of 386 amino acids. There were three SNPs observed in the coding region of the gene, one of which was of the mis-sense type, having c562G>A transition which resulted in substitution of alanine to threonine at position 188 in the protein sequence. In both the lines, an increase in expression of the gene was observed after onset of egg production with peak expression at the 40th week of age compared to before onset of lay. The SERPINB14 gene was expressed in the magnum, but not in ovary and infundibulum, tissues of each White Leghorn line. The promoter region of the gene showed SNPs with three haplotypes; H1, H2, and H3. The haplo groups were associated with the egg weight and age at sexual maturity in the IWI line and Haugh unit and albumin index in the IWK line.4. It was concluded that the ORF of SERPINB14 gene in White Leghorn chicken lines is polymorphic. The promoter region of the gene is also polymorphic and has significant (P < 0.05) association with Haugh unit and egg weight in IWK and IWI chicken lines, respectively.
Collapse
Affiliation(s)
- K K Kanaka
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - R N Chatterjee
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| | - P Kumar
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B Bhushan
- Animal Genetics Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D Divya
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| | - T K Bhattacharya
- Molecular Genetics Lab, ICAR-Directorate of Poultry Research, Rajendranagar, India
| |
Collapse
|
5
|
Huang HL, Liu HL, Cheng YS. A new DNA marker of the TMIGD1 gene used to identify high fertilization rates in Tsaiya ducks (Anas platyrhynchos). J Reprod Dev 2018; 64:529-534. [PMID: 30305481 PMCID: PMC6305851 DOI: 10.1262/jrd.2018-071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In a prior study, comparisons of individuals of Anas platyrhynchos with higher/lower reproductive performances showed that the expression of the transmembrane and immunoglobulin domain containing 1 (TMIGD1) gene significantly differed between the two groups. Here, we demonstrate that ducks with the TMIGD1 GG genotype have a significantly higher fertilization rate than other TMIGD1 genotypes. Primers designed based on the TMIGD1 sequence of Pekin duck were able to successfully amplify a TMIGD1 fragment from Tsaiya ducks, and sequencing results indicated that a single nucleotide polymorphism (SNP) of the TMIGD1 gene existed. We also developed a cost-effective method of restriction fragment length polymorphism. Using the above methods, ducks were classified into three genotypes. To identify the relationships between genotypes and traits, we recorded the ducks’ performance; to ensure the coverage of the entire duration of the fertile period, the egg collection period was extended to 18 days, and therefore, lower than usual fertilization rates were observed. Further assessment using a high-throughput system showed that the ducks with the GG genotype exhibited the highest fertilization rates among genotypes (P < 0.05). We suggest that TMIGD1 may affect the release of sperm protection factors from the female genital tract, and thus alter fertilization rate. In conclusion, the results of this study demonstrate that the TMIGD1 GG genotype can be used as a new DNA marker to identify animals with high fertilization rates at a young age, a process which could improve farming efficiency.
Collapse
Affiliation(s)
- Hsiu-Lin Huang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiao-Lung Liu
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan 712, Taiwan
| | - Yu-Shin Cheng
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan 712, Taiwan
| |
Collapse
|
6
|
Lin CW, Kuo JC, Liu HL, Cheng YS, Huang HL. A new method for detection of single nucleotide polymorphism in a female reproduction-associated gene, tmigd1, of Anas platyrhynchos using a strip biosensor with gold nanoparticles. Poult Sci 2018; 97:3456-3462. [DOI: 10.3382/ps/pey240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
|
7
|
Koglin S, Trense D, Wink M, Sauer-Gürth H, Tietze DT. Characterization of a de novo assembled transcriptome of the Common Blackbird ( Turdus merula). PeerJ 2017; 5:e4045. [PMID: 29255646 PMCID: PMC5732540 DOI: 10.7717/peerj.4045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In recent years, next generation high throughput sequencing technologies have proven to be useful tools for investigations concerning the genomics or transcriptomics also of non-model species. Consequently, ornithologists have adopted these technologies and the respective bioinformatics tools to survey the genomes and transcriptomes of a few avian non-model species. The Common Blackbird is one of the most common bird species living in European cities, which has successfully colonized urban areas and for which no reference genome or transcriptome is publicly available. However, to target questions like genome wide gene expression analysis, a reference genome or transcriptome is needed. METHODS Therefore, in this study two Common Blackbirds were sacrificed, their mRNA was isolated and analyzed by RNA-Seq to de novo assemble a transcriptome and characterize it. Illumina reads (125 bp paired-end) and a Velvet/Oases pipeline led to 162,158 transcripts. For the annotation (using Blast+), an unfiltered protein database was used. SNPs were identified using SAMtools and BCFtools. Furthermore, mRNA from three single tissues (brain, heart and liver) of the same two Common Blackbirds were sequenced by Illumina (75 bp single-end reads). The draft transcriptome and the three single tissues were compared by their BLAST hits with the package VennDiagram in R. RESULTS Following the annotation against protein databases, we found evidence for 15,580 genes in the transcriptome (all well characterized hits after annotation). On 18% of the assembled transcripts, 144,742 SNPs were identified which are, consequently, 0.09% of all nucleotides in the assembled transcriptome. In the transcriptome and in the single tissues (brain, heart and liver), 10,182 shared genes were found. DISCUSSION Using a next-generation technology and bioinformatics tools, we made a first step towards the genomic investigation of the Common Blackbird. The de novo assembled transcriptome is usable for downstream analyses such as differential gene expression analysis and SNP identification. This study shows the importance of the approach to sequence single tissues to understand functions of tissues, proteins and the phenotype.
Collapse
Affiliation(s)
- Sven Koglin
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Daronja Trense
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Michael Wink
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Hedwig Sauer-Gürth
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Dieter Thomas Tietze
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- Current affiliation: Natural History Museum Basel, Basel, Switzerland
| |
Collapse
|
8
|
Wu SJ, Cheng YS, Liu HL, Wang HH, Huang HL. Global transcriptional expression in ovarian follicles from Tsaiya ducks (Anas platyrhynchos) with a high-fertilization rate. Theriogenology 2016; 85:1439-1445.e1. [PMID: 26861074 DOI: 10.1016/j.theriogenology.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 11/06/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
Novel candidates for biomarkers of a high-fertilization rate were identified here through global transcriptional profiling of ovarian follicles. Some other differentially expressed candidate genes were first noted to influence animal reproduction in our previous cDNA microarray analysis and are now recognized as markers for marker-assisted selection. In the present study, we compared gene expression in ovarian follicles from animals with high- and low-fertilization rates using an oligonucleotide array. On the basis of a fold change of greater than 1.2 and less than -1.2, a difference of >100 Affymetrix arbitrary units between the two groups, and a P value of less than 0.05, 47 genes were found to be associated with fertilization rate. GOEAST and MetaCore software were further used to identify the functional categories of genes that were differentially expressed. Then, we focused on three interesting genes associated with a high-fertilization rate: one of these genes was discovered to participate in signaling pathways of fertilization, and two genes take roles in lipid metabolism. An oligonucleotide array showed that the levels of orthodenticle homeobox 2 (OTX2) and lecithin:cholesterol acyltransferase (LCAT) gene expression were 1.62-fold and 1.95-fold higher in the high-fertilization rate group than in the low-fertilization rate group, respectively (P < 0.05). The level of apolipoprotein A-I (APOA1) gene expression was also higher in the high-fertilization rate group, with a difference of 2.31-fold (P < 0.05). The data were validated through quantitative polymerase chain reaction analysis. These results confirm the usefulness of the array technique and data mining methods in the discovery of new biomarkers and add knowledge to our understanding of the factors affecting fertilization rates in ovarian follicles.
Collapse
Affiliation(s)
- Shyh-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Shin Cheng
- Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Hsiao-Lung Liu
- Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Hsing-He Wang
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan
| | - Hsiu-Lin Huang
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan.
| |
Collapse
|
9
|
Javůrková V, Krkavcová E, Kreisinger J, Hyršl P, Hyánková L. Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. ACTA ACUST UNITED AC 2015. [PMID: 26205223 DOI: 10.1002/jez.1935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In birds, spectrum of egg white proteins deposited into the egg during its formation are thought to be essential maternal effects. Particularly, egg white lysozyme (LSM), exhibiting great between and within species variability, is considered to be essential for developing avian embryos due to its physiological, antimicrobial, and innate immune defense functions. However, there have been few studies investigating effects of LSM on early post-hatching phenotype, despite its broad physiological and protective role during embryogenesis. Here, we test how experimentally increased concentrations of egg white LSM affect hatchability in Japanese quail (Coturnix japonica) and chick phenotype immediately after hatching (particularly body weight, tarsus length, plasma LSM concentration, and plasma complement activity). Chicks from eggs with increased LSM concentration displayed reduced tarsus length compared to chicks from control eggs while hatchability, body weight and plasma LSM concentration were unaffected. It is worth noting that no effect of increased in ovo lysozyme on eggs hatchability could be related to pathogen-free environment during artificial incubation of experimental eggs causing minimal pressure on embryo viability. While tangible in vivo mechanisms during avian embryogenesis remain to be tested, our study is the first to document experimentally that egg white LSM appears to have growth-regulation role during embryo development, with possible underlying phenotypic consequences in the early post-hatching period in precocial birds.
Collapse
Affiliation(s)
- Veronika Javůrková
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Vertebrate Biology v.v.i., Brno, Czech Republic
| | - Eva Krkavcová
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, Trentino, Italy
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Ludmila Hyánková
- Department of Genetics and breeding of farm animals, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
10
|
Liu HC, Huang JF, Lee SR, Liu HL, Hsieh CH, Huang CW, Huang MC, Tai C, Poivey JP, Rouvier R, Cheng YS. Selection for Duration of Fertility and Mule Duck White Plumage Colour in a Synthetic Strain of Ducks (Anas platyrhynchos). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:605-11. [PMID: 25715691 PMCID: PMC4412989 DOI: 10.5713/ajas.14.0740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/23/2014] [Accepted: 11/08/2014] [Indexed: 11/27/2022]
Abstract
A synthetic strain of ducks (Anas platyrhynchos) was developed by introducing genes for long duration of fertility to be used as mother of mule ducklings and a seven-generation selection experiment was conducted to increase the number of fertile eggs after a single artificial insemination (AI) with pooled Muscovy semen. Reciprocal crossbreeding between Brown Tsaiya LRI-2 (with long duration of fertility) and Pekin L-201 (with white plumage mule ducklings) ducks produced the G0. Then G1 were intercrossed to produce G2 and so on for the following generations. Each female duck was inseminated 3 times, at 26, 29, and 32 weeks of age. The eggs were collected for 14 days from day 2 after AI. Individual data regarding the number of incubated eggs (Ie), the number of fertile eggs at candling at day 7 of incubation (F), the total number of dead embryos (M), the maximum duration of fertility (Dm) and the number of hatched mule ducklings (H) with plumage colour were recorded. The selection criterion was the breeding values of the best linear unbiased prediction animal model for F. The results show high percentage of exhibited heterosis in G2 for traits to improve (19.1% for F and 12.9% for H); F with a value of 5.92 (vs 3.74 in the Pekin L-201) was improved in the G2. Heritabilities were found to be low for Ie (h (2) = 0.07±0.03) and M (h (2) = 0.07±0.01), moderately low for Dm (h (2) = 0.13±0.02), of medium values for H (h (2) = 0.20±0.03) and F (h (2) = 0.23±0.03). High and favourable genetic correlations existed between F and Dm (rg = 0.93), between F and H (rg = 0.97) and between Dm and H (rg = 0.90). The selection experiment showed a positive trend for phenotypic values of F (6.38 fertile eggs in G10 of synthetic strain vs 5.59 eggs in G4, and 3.74 eggs in Pekin L-201), with correlated response for increasing H (5.73 ducklings in G10 vs 4.86 in G4, and 3.09 ducklings in Pekin L-201) and maximum duration of the fertile period without increasing the embryo mortality rate. The average predicted genetic response for F was 40% of genetic standard deviation per generation of selection. The mule ducklings' feather colour also was improved. It was concluded that this study provided results for a better understanding of the genetics of the duration of fertility traits in the common female duck bred for mule and that the selection of a synthetic strain was effective method of improvement.
Collapse
Affiliation(s)
- H C Liu
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Ilan 26845, Taiwan
| | - J F Huang
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Ilan 26845, Taiwan
| | - S R Lee
- Ilan Branch, Livestock Research Institute, Council of Agriculture, Ilan 26845, Taiwan
| | - H L Liu
- Livestock Rescarch Institute, Council of Agriculture, Tainan 71246, Taiwan
| | - C H Hsieh
- Livestock Rescarch Institute, Council of Agriculture, Tainan 71246, Taiwan
| | - C W Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20024, Taiwan
| | - M C Huang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - C Tai
- Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - J P Poivey
- Institut National de la Recherche Agronomique, Station d'Amélioration Génétique des Animaux, 31326 Castanet-Tolosan, France
| | - R Rouvier
- Institut National de la Recherche Agronomique, F-34000 Montpellier, France
| | - Y S Cheng
- Livestock Rescarch Institute, Council of Agriculture, Tainan 71246, Taiwan
| |
Collapse
|
11
|
Huang HL, Cheng YS. A novel minisequencing single-nucleotide polymorphism marker of the lysozyme gene detects high hatchability of Tsaiya ducks (Anas platyrhynchos). Theriogenology 2014; 82:1113-20. [DOI: 10.1016/j.theriogenology.2014.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|