1
|
Aguiar APN, Mendonça PDS, Lima Junior RCP, Mota AGDM, Wong DVT, Oliveira RTGD, Ribeiro-Júnior HL, Pinheiro RF, Magalhães SMM. The role of adiposity, adipokines and polymorphisms of leptin and adiponectin in myelodysplastic syndromes. Br J Nutr 2024; 131:737-748. [PMID: 37855224 DOI: 10.1017/s0007114523002283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of the present study was to investigate the relationship between leptin and adiponectin gene polymorphisms, circulating levels of leptin and adiponectin, adiposity and clinical markers in patients with myelodysplastic syndrome (MDS). This cross-sectional study was conducted with 102 adults and elderly MDS patients and 102 age- and sex-matched controls. Clinical characteristics, co-morbidities, anthropometric data, laboratory evaluation and genetic analysis (polymorphisms -2548G > A/rs7799039 of the LEP gene and +276G > T/rs1501299 of the ADIPOQ gene) were investigated. Serum leptin was higher and adiponectin lower in MDS when compared with controls. There was a significant positive correlation between serum leptin levels and BMI (r = 0·264, P = 0·025), waist circumference (r = 0·235, P = 0·047), body fat percentage (BF %) (r = 0·373, P = 0·001) and the fat mass index (FMI) (r = 0·371, P < 0·001). A lower mean adiponectin was found among patients with high BF %, higher visceral adiposity index and metabolic syndrome. A significant association was found between the AA genotype (mutant) of the LEP polymorphism rs7799039 and male sex and blast excess (≥ 5 %). In addition, a significant association was observed between the TT genotype (mutant) of the ADIPOQ rs1501299 polymorphism and Fe overload. These results demonstrate the importance of a comprehensive and systematic evaluation in patients with MDS in order to identify and control negative factors not related to the disease at an early stage.
Collapse
Affiliation(s)
- Ana Patrícia Nogueira Aguiar
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Priscila da Silva Mendonça
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- University Hospital Walter Cantidio, Brazilian Company of Hospital Services (EBSERH), Fortaleza, CE, Brazil
| | - Roberto Cesar Pereira Lima Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Anacelia Gomes de Matos Mota
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Deysi Viviana Tenazoa Wong
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Pathology and Forensic Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Roberta Tatiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Silvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceará, Fortaleza, CE60430-275, Brazil
- Center for Research and Drug Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Post-graduate Program in Medical Science, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
2
|
Li H, Shen J, Ma S, Zhao F, Zhao W, Chen F, Fu Y, Li B, Cheng J, Deng Y. TGF-β1 suppresses de novo cholesterol biosynthesis in granulosa-lutein cells by down-regulating DHCR24 expression via the GSK-3β/EZH2/H3K27me3 signaling pathway. Int J Biol Macromol 2022; 224:1118-1128. [DOI: 10.1016/j.ijbiomac.2022.10.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
3
|
Shaikat AH, Ochiai M, Sasaki A, Takeda M, Arima A, Ohkubo T. Leptin Modulates the mRNA Expression of Follicle Development Markers in Post-hatch Chicks in an Age-Dependent Manner. Front Physiol 2021; 12:657527. [PMID: 34305632 PMCID: PMC8293390 DOI: 10.3389/fphys.2021.657527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is involved in regulating reproductive function in chickens, and the development of the leptin system is initiated during the early embryonic stage; however, whether leptin has a specific role in regulating the ovarian development in early post-hatch days is still not fully understood. This study investigated the expression of ovarian functional markers in growing juvenile chickens, along with the effects of leptin on gene expression in the hypothalamus–pituitary–gonadal (HPG) axis on specific ovarian-remodeling days. Leptin receptor (LEPR), follicle-stimulating hormone receptor (FSHR), and the mRNA expression of aromatase (CYP19A1) tended to increase with age in the ovaries of growing chicks. In the ovaries of 7-day-old chicks, intraperitoneally injected leptin significantly increased the mRNA expressions of LEPR, FSHR, and CYP19A1, and this resulted in the increased serum estradiol levels. However, leptin had no effect on hypothalamic LEPR, gonadotropin-releasing hormone 1 (GnRH1), or gonadotropin-inhibitory hormone (GnIH) mRNAs; however, in the pituitary gland, leptin significantly increased the mRNA expression of luteinizing hormone beta subunit (LHB) but had no effect on the mRNA expression of follicle-stimulating hormone beta subunit (FSHB). In 28-day-old chicks, hypothalamic and pituitary mRNAs were unaffected by leptin administration, except hypothalamic LEPR mRNA that was upregulated by a high dose of leptin. In the ovary, leptin dose-dependently decreased the mRNA expression of LEPR; low doses of leptin significantly increased the mRNA expression of FSHR, whereas high doses significantly decreased this expression; leptin did not affect the mRNA expression of CYP19A1; and high leptin doses significantly reduced the serum estradiol levels. Collectively, the results of this study show that leptin modulates ovarian development and folliculogenesis marker genes by primarily acting on ovaries on the specific ovarian-remodeling days in post-hatch chicks, which may alter folliculogenesis and ovarian development toward puberty in chicken.
Collapse
Affiliation(s)
- Amir Hossan Shaikat
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Masami Ochiai
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Akari Sasaki
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Misa Takeda
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Akari Arima
- College of Agriculture, Ibaraki University, Ami, Japan
| | - Takeshi Ohkubo
- College of Agriculture, Ibaraki University, Ami, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
4
|
Exploration of the effects of goose TCs on GCs at different follicular stages using a co-culture model. Biosci Rep 2021; 40:225883. [PMID: 32706022 PMCID: PMC7414519 DOI: 10.1042/bsr20200445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Granulosa cells (GCs) play a critical role in follicular development, which cannot be separated from the assistance of theca cells (TCs). In the present study, we used a transwell system to develop three stages of goose GCs in vitro mono-culture and co-culture models, and we analyzed the morphology, activity, intracellular lipid content and the expression of core genes involved in de novo lipogenesis (DNL), steroidogenesis, proliferation and apoptosis of the GCs. In the co-culture group, the activity of all three stages of GCs showed significant (P<0.01) changes, and they had a strong (P<0.01) correlation with culture time; further, the intracellular lipid deposition of hierarchical GCs was significantly different (P<0.01) between the two methods. Moreover, after co-culture, in pre-hierarchical GCs, the expression of SREBP, CYP11 and 3βHSD was promoted (P<0.01). In hierarchical GCs, the expression of ACC, SREBP, STAR, CYP11, 3βHSD and CCND1 was promoted at 48 h, but they were inhibited (P<0.05) at 96 h. In F1 GCs, the expression of ACC, FAS, SREBP, CYP11, BCL2 and CAS3 was inhibited (P<0.01). The results indicate that goose TCs had complex and time-dependent effects on the biological function of GCs at each corresponding stage, and the effects were distinct in the different stages. In addition, DNL, steroidogenesis, proliferation and apoptosis in hierarchical and F1 GCs might have some synergistic relationships in the effects of TCs on GCs. Furthermore, we speculated that TCs might play an important role in the differentiation and maturation of GCs during follicular development.
Collapse
|
5
|
Hu S, Gao S, Zhu J, Gan X, Chen X, He H, Liang L, Hu B, Hu J, Liu H, Han C, Kang B, Xia L, Wang J. Differential actions of diacylglycerol acyltransferase (DGAT) 1 and 2 in regulating lipid metabolism and progesterone secretion of goose granulosa cells. J Steroid Biochem Mol Biol 2020; 202:105721. [PMID: 32565248 DOI: 10.1016/j.jsbmb.2020.105721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 12/28/2022]
Abstract
Accumulating evidence shows that granulosa cells within both mammalian and avian ovaries have the ability to synthesize fatty acids through de novo lipogenesis and to accumulate triglycerides essential for oocyte and ovarian development. However, very little is known about the exact roles of key genes involved in the lipid metabolic pathway in granulosa cells. The goal of this study was to investigate the differential actions of diacylglycerol acyltransferase (DGAT) 1 and 2, which are recognized as the rate-limiting enzymes catalyzing the last step of triglyceride biosynthesis, in regulating lipid metabolism and steroidogenesis in granulosa cells of goose follicles at different developmental stages. It was observed that the mRNAs encoding DGAT1 and DGAT2 were ubiquitous in all examined granulosa cell layers but exhibited distinct expression profiles during follicle development. Notably, the mRNA levels of DGAT1, DGAT2, FSHR, LHR, STAR, CYP11A1, and 3βHSD remained almost constant in all except for 1-2 follicles within the 8-10 mm cohort, followed by an acute increase/decrease in the F5 follicles. At the cellular level, siRNA-mediated downregulation of DGAT1 or DGAT2 did not change the amount of lipids accumulated in both undifferentiated- and differentiated granulosa cells, while overexpression of DGAT2 promoted lipid accumulation and expression of lipogenic-related genes in these cells. Meanwhile, we found that interfering DGAT2 had no effect but interfering DGAT1 or overexpressing DGAT2 stimulated progesterone secretion in undifferentiated granulosa cells; in contrast, interference or overexpression of DGAT1/2 failed to change progesterone levels in differentiated granulosa cells but differently modulated expression of steroidogenic-related genes. Therefore, it could be concluded that DGAT1 is less efficient than DGAT2 in promoting lipid accumulation in both undifferentiated- and differentiated granulosa cells and that DGAT1 negatively while DGAT2 positively regulates progesterone production in undifferentiated granulosa cells.
Collapse
Affiliation(s)
- Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shanyan Gao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaran Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Liang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Xia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Zhu M, Shen Q, Li X, Kang J. Removal of peri-ovarian adipose tissue affects follicular development and lipid metabolism†. Biol Reprod 2020; 103:1199-1208. [PMID: 32813010 DOI: 10.1093/biolre/ioaa144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
The development and maturity of follicles are regulated by sex hormones and growth factors. It has been proven that peri-ovarian adipose tissue (POAT) plays an important role in folliculogenesis and fertility in the female ICR and KM mice. The aim of the present study was to further investigate whether the removal of bilateral POAT affected follicular development and lipid metabolism in the female C57BL/6 J mice. Female C57BL/6 J mice at 6-week old were sham-operated (Sham) or removed bilateral POAT (Surgery). After 2 weeks, the mice were subjected to the body composition analysis and indirect calorimetry measurement. Our results show that the Surgery mice exhibited abnormal follicular development, including increased follicular dysplasia and atresia, decreased serum sex hormone levels, and abnormal expression of follicular development-related genes. Correspondingly, the endometrial thickness of the Surgery mice was less than the Sham mice. In addition, the Surgery mice had abnormal lipid metabolism, including reduced fat mass, increased energy expenditure, and up-regulated gene and protein expression involved in lipolysis. These data confirmed the importance of POAT in the follicular development in the female reproduction and suggested the contribution of POAT to the whole-body lipid metabolism.
Collapse
Affiliation(s)
- Menliang Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyang Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolian Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jihong Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Ji H, Guo W, Niu C, Li Y, Lian S, Zhan X, Guo J, Zhen L, Yang H, Li S, Wang J. Metabonomics analysis of Zi goose follicular granulosa cells using ENO1 gene expression interference. J Anim Physiol Anim Nutr (Berl) 2019; 104:838-846. [PMID: 31821655 DOI: 10.1111/jpn.13254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The Zi goose is native to North-east China and is noted for its high egg production. Alpha enolase (ENO1) is a glycolytic enzyme which functions as a plasminogen receptor in follicular granulosa cells (FGCs), with several studies showing that FGCs can support follicular development. By transfecting the ENO1 interfering plasmid (shRNA) into FGCs, ENO1 expression in these cells was downregulated, suggesting the successful knock-down of ENO1 in these cells. In this knock-down model, we detected 13 metabolites from FGCs using LC/MS. When compared with the non-coding shRNA (NC) group, the lower level metabolites were (R)-(+)-citronellic acid, altretamine, 3-hydroxycaproic acid, heptadecanoic acid, cholecalciferol vitamin D3, indole, benzoic acid, capric acid, caffeic acid, azelaic acid, 3,4-dihydroxyhydrocinnamic acid and cholic acid, while oleic acid was detected at high levels. To further examine the results of metabolomics, six key metabolites were verified by gas chromatography-mass spectrometry (GC-MS). We found that vitamin D3, indole, benzoic acid, capric acid and cholic acid were significantly downregulated in the shRNA group, while oleic acid was significantly upregulated. This observation was consistent with the metabolomics data. Through these studies, we found that decreased ENO1 levels altered certain metabolite levels in FGCs.
Collapse
Affiliation(s)
- Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunyang Niu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuelong Zhan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huanmin Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Niu W, Qazi IH, Li S, Zhao X, Yin H, Wang Y, Zhu Q, Han H, Zhou G, Du X. Expression of FOXL2 and RSPO1 in Hen Ovarian Follicles and Implication of Exogenous Leptin in Modulating Their mRNA Expression in In Vitro Cultured Granulosa Cells. Animals (Basel) 2019; 9:ani9121083. [PMID: 31817265 PMCID: PMC6941104 DOI: 10.3390/ani9121083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, using a laying hen model, we determined the expression of FOXL2 and RSPO1 in different central and peripheral tissue and ovarian follicles at different stages of development. At the same time, mRNA expression of both genes in granulosa and theca cells harvested from follicles at different stages of folliculogenesis was also evaluated. Finally, we assessed the effect of leptin treatment on expression of FOXL2 and RSPO1 in in vitro cultured granulosa cells harvested from 1-5 mm to F3-F1 follicles. Our RT-qPCR results revealed that a comparatively higher expression of FOXL2 and RSPO1 was observed in ovary, hypothalamus, and pituitary. Abundant mRNA expression of FOXL2 was observed in small prehierarchical follicles (1-1.9 and 2-2.9 mm follicles; p < 0.05), whereas mRNA expression of RSPO1 showed an increasing trend in large hierarchical follicles (F5-F1), and its abundant expression was observed in post-ovulatory follicles. FOXL2 mRNA expression was stable in granulosa cells harvested from 3-5 mm to F4 follicles, and exhibited a significantly higher expression in large hierarchical follicles. Conversely, relatively low mRNA expression of FOXL2 was observed in theca cells. RSPO1 mRNA expression was relatively lower in granulosa cells; however, theca cells exhibited a significantly higher mRNA expression of RSPO1 in F4 to F1 follicles. In the next experiment, we treated the in vitro cultured granulosa cells with different concentrations (1, 10, 100, and 1000 ng/mL) of exogenous leptin. Compared to the control group, a significant increase in the expression of FOXL2 was observed in groups treated with 1, 10, and 100 ng/mL leptin, whereas expression of RSPO1 was increased in all leptin-treated groups. When treated with 100 ng/mL leptin, FOXL2 and RSPO1 expression was upregulated in cultured granulosa cells harvested from both large hierarchical (F3-F1) and small prehierarchical follicles (1-5 mm). Based on these findings and evidence from mainstream literature, we envisage that FOXL2 and RSPO1 genes (in connection with hypothalamic-hypophysis axis) and leptin (via modulation of FOXL2 and RSPO1 expression) might have significant physiological roles, at least in part, in modulating the ovarian mechanisms, such as follicle development, selection, and steroidogenesis in laying hens.
Collapse
Affiliation(s)
- Weihe Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Sindh, Pakistan
| | - Sichen Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (W.N.); (I.H.Q.); (S.L.); (X.Z.); (H.Y.); (Y.W.); (Q.Z.)
- Correspondence: (G.Z.); (X.D.)
| |
Collapse
|
9
|
Leptin Receptor Mediates Bmal1 Regulation of Estrogen Synthesis in Granulosa Cells. Animals (Basel) 2019; 9:ani9110899. [PMID: 31683864 PMCID: PMC6912815 DOI: 10.3390/ani9110899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary There is increased interest in determining the effect of the biological clock system on reproduction, but how this biological system affects mammalian fertility and the regulation by clock genes on key genes of reproduction is poorly understood. This study examined the function of Leptin on reproduction through interaction with the Leptin receptor (Lepr) and the regulation of the key clock gene brain and muscle ARNT-like 1 (Bmal1) on Lepr. The results suggested that estrogen (E2) synthesis is regulated by Bmal1 through the Leptin–Lepr pathway as part of the regulatory mechanism of the circadian system on the fertility of female mammals. Abstract Chronobiology affects female fertility in mammals. Lepr is required for leptin regulation of female reproduction. The presence of E-box elements in the Lepr promoter that are recognized and bound by clock genes to initiate gene transcription suggested that circadian systems might regulate fertility through Lepr. However, it is unclear whether Bmal1, a key oscillator controlling other clock genes, is involved in leptin regulation in hormone synthesis through Lepr. In this study, serum estradiol (E2) concentration and the expressions of Bmal1, Lepr, Cyp19a1, and Cyp11a1 genes were found to display well-synchronized circadian rhythms. Knockdown of Bmal1 significantly reduced expression levels of Lepr, Fshr, and Cyp19a1 genes; protein production of Bmal1, Lepr, and Cyp19a1; and the E2 concentration in granulosa cells. Knockdown of Lepr reduced the expression levels of Cyp19a1 and Cyp11a1 genes and Cyp19a1 protein, and also reduced E2 concentration. Addition of leptin affected the expression of Cyp19a1, Cyp11a1, and Fshr genes. Bmal1 deficiency counteracted leptin-stimulated upregulation of the genes encoding E2 synthesis in granulosa cells. These results demonstrated that Bmal1 participates in the process by which leptin acts on Lepr to regulate E2 synthesis.
Collapse
|
10
|
Li Q, Hu S, Wang Y, Deng Y, Yang S, Hu J, Li L, Wang J. mRNA and miRNA Transcriptome Profiling of Granulosa and Theca Layers From Geese Ovarian Follicles Reveals the Crucial Pathways and Interaction Networks for Regulation of Follicle Selection. Front Genet 2019; 10:988. [PMID: 31708963 PMCID: PMC6820619 DOI: 10.3389/fgene.2019.00988] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
Follicle development is characterized by the recruitment, growth, selection, and dominance of follicles, and follicle selection determines the lifetime reproductive performance. However, in birds, the molecular mechanisms underlying follicle selection still remain elusive. This study analyzed genome-wide changes in the mRNA and miRNA expression profiles in both the granulosa and theca layers of geese ovarian follicles before selection (4–6- and 8–10-mm follicles) and after selection (F5). The sequencing results showed that a higher number of both differentially expressed (DE) mRNAs and DE miRNAs were identified between 8–10-mm and F5 follicles compared with those between the 4–6- and 8–10-mm follicles, especially in the granulosa layer. Moreover, a Short Time-series Expression Miner analysis identified a large number of DE mRNAs and DE miRNAs that are associated with follicle selection. The functional enrichment analysis showed that DE genes in the granulosa layer during follicle selection were mainly enriched in five pathways related to junctional adhesion and two pathways associated with lipid metabolism. Additionally, an interaction network was constructed to visualize interactions among protein-coding genes, which identified 53 junctional adhesion- and 15 lipid regulation-related protein-coding genes. Then, a co-expression network between mRNAs and miRNAs in relation to junctional adhesion was also visualized and mainly included acy-miR-2954, acy-miR-218, acy-miR-2970, acy-miR-100, acy-miR-1329, acy-miR-199, acy-miR-425, acy-miR-181, and acy-miR-147. Furthermore, miRNA–mRNA interaction pairs related to lipid regulation were constructed including acy-miR-107, acy-miR-138, acy-miR-130, acy-miR-128, and acy-miR-101 during follicular selection. In summary, these data highlight the key roles of junctional adhesion and lipid metabolism during follicular selection and contribute to a better understanding of the mechanisms underlying follicle selection in birds.
Collapse
Affiliation(s)
- Qin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Poultry Science Institute, Chongqing Academy of Animal Science, Chongqing, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yushi Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shuang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Comparison of growth characteristics of in vitro cultured granulosa cells from geese follicles at different developmental stages. Biosci Rep 2018; 38:BSR20171361. [PMID: 29545316 PMCID: PMC5920135 DOI: 10.1042/bsr20171361] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
Granulosa cells (GCs) are essential components of follicles and are involved in regulating the process of follicles development. However, comparative studies on GCs isolated from different staged follicles have not been conducted in goose. The aim of the present study was to identify the growth characteristics of goose GCs from pre-hierarchical (6–10 mm) and hierarchical (F4–F2, F1) follicles. Our results showed that the three cohorts of cells had different tolerance to collagenase and had noticeable morphological differences. The F1 granulosa layers were fully digested by 0.1% collagenase, while higher concentration (0.3%) was used for both F4–F2 and pre-hierarchical granulosa layers. In the state of suspension, the diameter of F1 individual cell was larger than the other two cohorts. However, after adhering to the culture plate, cells of F1 just had changes in the diameter accompanied by small bright spots, while both pre-hierarchical and F4–F2 GCs proliferated rapidly with spreading and irregularly shaped voids. Furthermore, all attached cells could be stained by the follicle-stimulating hormone receptor antibody. Analyses of both growth curve and the mRNA expression profiles of genes related to cellular proliferation, apoptosis, and steroidogenesis suggested that three cohorts of in vitro cultured GCs had different physiological viability and functions. Taken together, the present study not only revealed differences of the growth characteristics among three cohorts of goose GCs from pre-hierarchical, F4–F2 and F1 follicles, but also optimized the in vitro culture system of geese different staged GCs.
Collapse
|
12
|
Reverchon M, Rame C, Bunel A, Chen W, Froment P, Dupont J. VISFATIN (NAMPT) Improves In Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling Through SIRT1 in Bovine Granulosa Cells. Biol Reprod 2016; 94:54. [PMID: 26792944 DOI: 10.1095/biolreprod.115.134650] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
VISFATIN is a novel adipokine, also known as a nicotinamide phosphorybosyltransferase (NAMPT), that is able to modulate different processes, including lipid and glucose metabolism, oxidative stress, inflammation, and insulin resistance. Recent data suggest that it also plays a role in reproductive function in rats, humans, and chickens. Here we identified VISFATIN in the bovine ovary and investigated the in vitro effects of this hormone on granulosa cell steroidogenesis and proliferation and oocyte maturation. By RT-PCR, immunoblotting, and immunohistochemistry, we found VISFATIN in various ovarian cells, including granulosa and theca cells, corpus luteum, and oocytes. In cultured bovine granulosa cells, we showed that IGF1 (10(-8) M) and VISFATIN (10 and 100 ng/ml) but not FSH (10(-8) M) increased mRNA expression levels of NAMPT after 48 h of stimulation. Moreover, we observed that human recombinant VISFATIN (hVisf, 10 ng/ml, 48 h) increased the release of progesterone and estradiol secretion, and this was associated with an increase in the protein level of STAR, the HSD3B activity, and the phosphorylation levels of IGF1R and MAPK ERK1/2 in the presence or absence of IGF1 (10(-8) M). All these effects were abolished when NAMPT was knocked down and when the sirtuin pharmacological inhibitors CHIC-35 (60 nM) and EX-527 (0.5 μM) were preincubated in bovine granulosa cells. Thus, in cultured bovine granulosa cells, VISFATIN improves basal and IGF1-induced steroidogenesis and IGF1 receptor signaling through SIRT1.
Collapse
Affiliation(s)
- Maxime Reverchon
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Christelle Rame
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Audrey Bunel
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Wenyong Chen
- Beckman Research Institute of the City of Hope, Duarte, California
| | - Pascal Froment
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Joëlle Dupont
- Unité Mixte de Recherches 7247 Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université de Tours-Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
13
|
Zhu HJ, Li SJ, Pan H, Li N, Zhang DX, Wang LJ, Yang HB, Wu Q, Gong FY. The Changes of Serum Leptin and Kisspeptin Levels in Chinese Children and Adolescents in Different Pubertal Stages. Int J Endocrinol 2016; 2016:6790794. [PMID: 27990162 PMCID: PMC5136392 DOI: 10.1155/2016/6790794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022] Open
Abstract
The aim of the study is to investigate the changes of serum leptin and kisspeptin levels in children and adolescents with different pubertal stages and nutritional states. A total of 647 Chinese children and adolescents were recruited, and serum estradiol, testosterone, pituitary gonadotropins, leptin, and kisspeptin levels were measured. The results showed that serum leptin levels of boys in T2 stage were the highest among the five stages, while they showed a gradual increase from T1 to T5 stage in girls and reached the highest in T5 stage (P < 0.05). Conversely, serum kisspeptin levels of boys were higher in T4 and T5 stages than those in T1 stage, while its levels of girls were the highest in T2 stage, 21.4% higher than those in T1 stage (P < 0.05). Both leptin and kisspeptin levels were positively correlated with BMI, WC, and weight in all boys and girls (all P < 0.05). In conclusion, kisspeptin levels were firstly found to be notably changed in pubertal stages and nutritional status in Chinese children and adolescents with a significant sexual dimorphism. Obese/overweight girls had higher kisspeptin levels, and there was a positive correlation between kisspeptin and FSH and LH and obesity-related parameters in all boys and girls.
Collapse
Affiliation(s)
- Hui juan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Su juan Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Naishi Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Dian xi Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin jie Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hong bo Yang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qinyong Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feng ying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- *Feng ying Gong:
| |
Collapse
|
14
|
Wen R, Hu S, Xiao Q, Han C, Gan C, Gou H, Liu H, Li L, Xu H, He H, Wang J. Leptin exerts proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway. J Steroid Biochem Mol Biol 2015; 149:70-9. [PMID: 25576904 DOI: 10.1016/j.jsbmb.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 01/30/2023]
Abstract
Leptin was known as a pivotal regulator for the control of food intake and energy expenditure. However, leptin has also been found to be involved in the regulation of female reproductive system through interactions with pathways in the hypothalamic-hypophyseal axis and direct action at the ovarian level. In the present study, granulosa cells from goose ovarian preovulatory (F1-F3) follicles were cultured with leptin (0, 1, 10 or 100ng/ml). The proliferative and anti-apoptotic actions of leptin in granulosa cells were revealed by CCK-8, BrdU and TUNEL assays. Quantitative real-time PCR and Western blot analyses further indicated that leptin treatment led to increased expression of cyclin D1, cyclin D2, cyclin D3 and bcl-2, and decreased expression of p21 and caspase-3. The effects were involved in the activation of the PI3K/Akt/mTOR signaling pathway, as leptin treatment enhanced the expression of PI3K, Akt1, Akt2, Raptor, mTOR, S6K and p-S6K. Moreover, blockade of the PI3K/Akt/mTOR pathway attenuated the influences of leptin on proliferation and apoptosis of granulosa cells, considering that activated factors by leptin were inhibited in the presence of either 20μM LY294002 (a PI3K inhibitor) or 10μM rapamycin (an mTOR inhibitor). In addition, leptin had a modulatory effect on the expression of its receptor at the transcriptional and translational levels, and blockade of PI3K/Akt/mTOR inhibited both basal and leptin-induced Lepr gene and protein expression. These findings suggest that leptin exerts its proliferative and anti-apoptotic effects on goose granulosa cells through the PI3K/Akt/mTOR signaling pathway via interaction with its receptor.
Collapse
Affiliation(s)
- Rui Wen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Qihai Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Chao Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua Gou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China.
| |
Collapse
|