1
|
Talluri TR, Kumaresan A, Paul N, Elango K, Raval K, Nag P, Legha RA, Pal Y. Heterologous Seminal Plasma Reduces the Intracellular Calcium and Sperm Viability of Cryopreserved Stallion Spermatozoa. Biopreserv Biobank 2024; 22:82-87. [PMID: 37466468 DOI: 10.1089/bio.2022.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Despite the vital role of seminal plasma (SP) in maintaining sperm function and aiding gamete interaction in many species, SP is usually removed before cryopreservation of stallion sperm to improve cryosurvival of sperm. The present study assessed if the vital sperm functional parameters of genetically superior stallions producing poor quality semen can be enhanced by the supplementation of heterologous SP from the stallion producing high quality semen. Spermatozoa from poor quality semen producing stallions were divided into three aliquots: two aliquots were supplemented with SP obtained from good quality semen producing stallions at the rate of 20% and 30%, respectively, whereas the third aliquot remained as control (0% SP) and incubated at 37°C for 30 minutes. Sperm membrane integrity, mitochondrial membrane potential (MMP), mitochondrial superoxide (mtROS) generation, and intracellular calcium status were assessed at different time intervals during incubation by flow cytometry. It was observed that the dead sperm population increased (p < 0.01) during incubation in both the 20% and 30% SP-supplemented groups. However, no significant changes were observed in MMP in both the control and treatment groups at different time intervals. Interestingly, it was found that sperm mtROS production increased (p < 0.01) during incubation in the SP-supplemented groups compared with the control group. The proportion of live spermatozoa with high intracellular calcium was reduced (p < 0.01) during incubation in the SP-incubated groups. Collectively, heterologous SP addition could not repair the damages caused by the cryopreservation and further resulted in deterioration of semen quality as observed in our study by reducing viability, increasing reactive oxygen species (ROS) production possibly due to high proportion of dead cells, or some factors (yet to be identified) that are inducive of oxidative stress in stallion spermatozoa.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana
| |
Collapse
|
2
|
Salavati M, Clark R, Becker D, Kühn C, Plastow G, Dupont S, Moreira GCM, Charlier C, Clark EL. Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using Cap Analysis Gene Expression sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad108. [PMID: 37216666 PMCID: PMC10411599 DOI: 10.1093/g3journal/jkad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Understanding the genomic control of tissue-specific gene expression and regulation can help to inform the application of genomic technologies in farm animal breeding programs. The fine mapping of promoters [transcription start sites (TSS)] and enhancers (divergent amplifying segments of the genome local to TSS) in different populations of cattle across a wide diversity of tissues provides information to locate and understand the genomic drivers of breed- and tissue-specific characteristics. To this aim, we used Cap Analysis Gene Expression (CAGE) sequencing, of 24 different tissues from 3 populations of cattle, to define TSS and their coexpressed short-range enhancers (<1 kb) in the ARS-UCD1.2_Btau5.0.1Y reference genome (1000bulls run9) and analyzed tissue and population specificity of expressed promoters. We identified 51,295 TSS and 2,328 TSS-Enhancer regions shared across the 3 populations (dairy, beef-dairy cross, and Canadian Kinsella composite cattle from 2 individuals, 1 of each sex, per population). Cross-species comparative analysis of CAGE data from 7 other species, including sheep, revealed a set of TSS and TSS-Enhancers that were specific to cattle. The CAGE data set will be combined with other transcriptomic information for the same tissues to create a new high-resolution map of transcript diversity across tissues and populations in cattle for the BovReg project. Here we provide the CAGE data set and annotation tracks for TSS and TSS-Enhancers in the cattle genome. This new annotation information will improve our understanding of the drivers of gene expression and regulation in cattle and help to inform the application of genomic technologies in breeding programs.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, Genetics Core, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock 18059, Germany
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton T6G 2H1, Canada
| | - Sébastien Dupont
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Carole Charlier
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège 4000, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | | |
Collapse
|
3
|
Kumaresan A, Sinha MK, Paul N, Nag P, Ebenezer Samuel King JP, Kumar R, Datta TK. Establishment of a repertoire of fertility associated sperm proteins and their differential abundance in buffalo bulls (Bubalus bubalis) with contrasting fertility. Sci Rep 2023; 13:2272. [PMID: 36754964 PMCID: PMC9908891 DOI: 10.1038/s41598-023-29529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Sperm harbours a wide range of proteins regulating their functions and fertility. In the present study, we made an effort to characterize and quantify the proteome of buffalo bull spermatozoa, and to identify fertility associated sperm proteins through comparative proteomics. Using high-throughput mass spectrometry platform, we identified 1305 proteins from buffalo spermatozoa and found that these proteins were mostly enriched in glycolytic process, mitochondrial respiratory chain, tricarboxylic acid cycle, protein folding, spermatogenesis, sperm motility and sperm binding to zona pellucida (p < 7.74E-08) besides metabolic (p = 4.42E-31) and reactive oxygen species (p = 1.81E-30) pathways. Differential proteomic analysis revealed that 844 proteins were commonly expressed in spermatozoa from both the groups while 77 and 52 proteins were exclusively expressed in high- and low-fertile bulls, respectively. In low-fertile bulls, 75 proteins were significantly (p < 0.05) upregulated and 176 proteins were significantly (p < 0.05) downregulated; these proteins were highly enriched in mitochondrial respiratory chain complex I assembly (p = 2.63E-07) and flagellated sperm motility (p = 7.02E-05) processes besides oxidative phosphorylation pathway (p = 6.61E-15). The down regulated proteins in low-fertile bulls were involved in sperm motility, metabolism, sperm-egg recognition and fertilization. These variations in the sperm proteome could be used as potential markers for the selection of buffalo bulls for fertility.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| | - Tirtha Kumar Datta
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, 125 001, India
| |
Collapse
|
4
|
Elango K, Karuthadurai T, Kumaresan A, Sinha MK, Ebenezer Samuel King JP, Nag P, Sharma A, Raval K, Paul N, Talluri TR. High-throughput proteomic characterization of seminal plasma from bulls with contrasting semen quality. 3 Biotech 2023; 13:60. [PMID: 36714547 PMCID: PMC9877259 DOI: 10.1007/s13205-023-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Seminal plasma proteins are the major extrinsic factors that can modulate the sperm quality and functions. The present study was carried out to compare the proteomic profiles of seminal plasma from breeding bulls producing good and poor quality semen in an effort to understand the possible proteins associated with semen quality. A total of 910 and 715 proteins were detected in the seminal plasma of poor and good quality semen producing bulls, respectively. A total of 705 proteins were common to both the groups, in which 380 proteins were upregulated and 89 proteins were downregulated in the seminal plasma of poor quality semen, while 236 proteins were co-expressed. The proteins negatively influencing sperm functions such as CCL2, UQCRC2, and SAA1 were among the top ten upregulated proteins in the seminal plasma of poor quality semen. Proteins having a positive role in sperm functions (NGF, EEF1A2, COL1A2, IZUMO4, PRSS1, COL1A1, WFDC2) were among the top ten downregulated proteins in the seminal plasma of poor quality semen. The upregulation of oxidation-reduction process-related proteins, histone proteins (HIST3H2A, H2AFJ, H2AFZ, H2AFX, HIST2H2AB, H2AFV, HIST1H2AC, HIST2H2AC, LOC104975684, LOC524236, LOC614970, LOC529277), and ubiquinol-cytochrome-c reductase proteins (UQCRB, UQCRFS1, UQCRQ, UQCRC1, UQCRC2) indicate deranged oxidation-reduction equilibrium, chromatin condensation and spermatogenesis in poor quality semen producing bulls. The expression of proteins essential for motile cilium (CCDC114, CFAP206, TEKT4), chromatin integrity (PRM2), gamete fusion (IZUMO4, EQTN), hyperactivation, tyrosine phosphorylation, and capacitation [PI3K-Akt signalling pathway-related proteins (COL1A1, COL2A1, COL1A2, SPP1, PDGFA, NGF)] were down regulated in poor quality semen producing bulls. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03474-6.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, 560030 Karnataka India
| |
Collapse
|
5
|
Spermatozoa and seminal plasma proteomics: too many molecules, too few markers. The case of bovine and porcine semen. Anim Reprod Sci 2022; 247:107075. [DOI: 10.1016/j.anireprosci.2022.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
|
6
|
Talluri TR, Kumaresan A, Sinha MK, Paul N, Ebenezer Samuel King JP, Datta TK. Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci Rep 2022; 12:10692. [PMID: 35739152 PMCID: PMC9226030 DOI: 10.1038/s41598-022-14589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bull fertility is of paramount importance in bovine industry because semen from a single bull is used to breed several thousands of cows; however, so far, no reliable test is available for bull fertility prediction. In the present study, spermatozoa from high- and low-fertility bulls were subjected to high-throughput transcriptomic, proteomic and metabolomic analysis. Using an integrated multi-omics approach the molecular differences between high- and low-fertility bulls were identified. We identified a total of 18,068 transcripts, 5041 proteins and 3704 metabolites in bull spermatozoa, of which the expression of 4766 transcripts, 785 proteins and 33 metabolites were dysregulated between high- and low-fertility bulls. At transcript level, several genes involved in oxidative phosphorylation pathway were found to be downregulated, while at protein level genes involved in metabolic pathways were significantly downregulated in low-fertility bulls. We found that metabolites involved in Taurine and hypotaurine metabolism were significantly downregulated in low-fertility bulls. Integrated multi-omics analysis revealed the interaction of dysregulated transcripts, proteins and metabolites in major metabolic pathways, including Butanoate metabolism, Glycolysis and gluconeogenesis, Methionine and cysteine metabolism, Phosphatidyl inositol phosphate, pyrimidine metabolism and saturated fatty acid beta oxidation. These findings collectively indicate that molecules governing sperm metabolism potentially influence bull fertility.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
7
|
Chen SY, Schenkel FS, Melo ALP, Oliveira HR, Pedrosa VB, Araujo AC, Melka MG, Brito LF. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. BMC Genomics 2022; 23:331. [PMID: 35484513 PMCID: PMC9052698 DOI: 10.1186/s12864-022-08555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Background Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-square statistic. Results There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromosomes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, JMJD1C, and NELL2) traits. Conclusions These findings contribute to better understand the underlying biological mechanisms of fertility and reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for these traits in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08555-z.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ana L P Melo
- Department of Reproduction and Animal Evaluation, Rural Federal University of Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI, 54022, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA. .,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
8
|
Saraf KK, Kumaresan A, Arathi BP, Sundaresan NR, Datta TK. Comparative high-throughput analysis of sperm membrane proteins from crossbred bulls with contrasting fertility. Andrologia 2022; 54:e14451. [PMID: 35484731 DOI: 10.1111/and.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to identify fertility associated sperm membrane proteins in crossbred bulls. Sperm membrane proteins from high- and low-fertile Holstein Friesian crossbred bulls (n = 3 each) were subjected to high-throughput liquid chromatography-mass spectrometry (LC-MS/MS) for comparative proteomic analysis. Proteomic profiling identified a total of 456 proteins in crossbred bull spermatozoa; it was found that 108 proteins were up regulated while 26 proteins were down regulated (>1.5-folds) in spermatozoa from low- compared to high-fertile bulls. Gene ontology classification revealed that upregulated proteins in low-fertile bulls were involved in biological process such as oxidation-reduction process (p = 3.14E-06), fusion of sperm to egg plasma membrane (p = 7.51E-04), sperm motility (p = 0.03), and capacitation (p = 0.09), while down regulated proteins were associated with transport (p = 6.94E-04), superoxide metabolic process (p = 0.02), and tricarboxylic acid cycle (p = 0.04). KEGG pathway analysis revealed that oxidative phosphorylation and tricarboxylic acid cycle pathways are the most significantly affected pathway in low-fertile bulls. It was concluded that expression of proteins associated with oxidative phosphorylation and tricarboxylic acid cycle pathways were altered in low-fertile crossbred bulls, and expression levels of SPATA19, ELSPBP1, ACRBP, CLU, SUCLA2, and SPATC1 could aid in assessing potential fertility of crossbred bulls.
Collapse
Affiliation(s)
- Kaustubh Kishor Saraf
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, India
| | | | | | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
9
|
Karuthadurai T, Das DN, Kumaresan A, Sinha MK, Kamaraj E, Nag P, Ebenezer Samuel King JP, Datta TK, Manimaran A, Jeyakumar S, Ramesha K. Sperm Transcripts Associated With Odorant Binding and Olfactory Transduction Pathways Are Altered in Breeding Bulls Producing Poor-Quality Semen. Front Vet Sci 2022; 9:799386. [PMID: 35274020 PMCID: PMC8902071 DOI: 10.3389/fvets.2022.799386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
Spermatozoa carries a reservoir of mRNAs regulating sperm functions and fertilizing potential. Although it is well recognized that a considerable proportion of high genetic merit breeding bulls produce poor-quality semen, the transcriptomic alterations in spermatozoa from such bulls are not understood. In the present study, comparative high-throughput transcriptomic profiling of spermatozoa from good and poor-quality semen-producing bulls was carried out to identify the transcripts associated with semen quality. Using next-generation sequencing (NGS), we identified 11,632 transcripts in Holstein Friesian bull spermatozoa; after total hit normalization, a total of 544 transcripts were detected, of which 185 transcripts were common to both good and poor-quality semen, while 181 sperm transcripts were unique to good quality semen, and 178 transcripts were unique to poor-quality semen. Among the co-expressed transcripts, 31 were upregulated, while 108 were downregulated, and 46 were neutrally expressed in poor-quality semen. Bioinformatics analysis revealed that the dysregulated transcripts were predominantly involved in molecular function, such as olfactory receptor activity and odor binding, and in biological process, such as detection of chemical stimulus involved in sensory perception, sensory perception of smell, signal transduction, and signal synaptic transmission. Since a majority of the dysregulated transcripts were involved in the olfactory pathway (85% of enriched dysregulated genes were involved in this pathway), the expression of selected five transcripts associated with this pathway (OR2T11, OR10S1, ORIL3, OR5M11, and PRRX1) were validated using real-time qPCR, and it was found that their transcriptional abundance followed the same trend as observed in NGS; the sperm transcriptional abundance of OR2T11 and OR10S1 differed significantly (p < 0.05) between good and poor-quality semen. It is concluded that poor-quality semen showed altered expression of transcripts associated with olfactory receptors and pathways indicating the relationship between olfactory pathway and semen quality in bulls.
Collapse
Affiliation(s)
- Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Dayal Nitai Das
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
10
|
Arunkumar R, Kumaresan A, Sinha MK, Elango K, Ebenezer Samuel King JP, Nag P, Karuthadurai T, Baithalu RK, Mohanty TK, Kumar R, Datta TK. The cryopreservation process induces alterations in proteins associated with bull sperm quality: The equilibration process could be a probable critical control point. Front Endocrinol (Lausanne) 2022; 13:1064956. [PMID: 36568066 PMCID: PMC9787546 DOI: 10.3389/fendo.2022.1064956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The present study quantitatively characterized the proteomic changes in bull spermatozoa induced by the cryopreservation process. We performed high-throughput comparative global proteomic profiling of freshly ejaculated (before cryopreservation), equilibrated (refrigerated storage; during cryopreservation), and frozen (ultralow temperature; after cryopreservation) bull spermatozoa. Using the liquid chromatography-mass spectrometry (LC-MS/MS) technique, a total of 1,692, 1,415, and 1,286 proteins were identified in fresh, equilibrated, and cryopreserved spermatozoa, respectively. When the proteome of fresh spermatozoa was compared with equilibrated spermatozoa, we found that 166 proteins were differentially expressed. When equilibrated spermatozoa were compared with cryopreserved spermatozoa, we found that 147 proteins were differentially expressed between them. Similarly, we found that 156 proteins were differentially expressed between fresh and cryopreserved spermatozoa. Among these proteins, the abundance of 105 proteins was lowered during the equilibration process itself, while the abundance of 43 proteins was lowered during ultralow temperature preservation. Remarkably, the equilibration process lowered the abundance of sperm proteins involved in energy metabolism, structural integrity, and DNA repair and increased the abundance of proteins associated with proteolysis and protein degradation. The abundance of sperm proteins associated with metabolism, cGMP-PKG (cyclic guanosine 3',5'-monophosphate-dependent protein kinase G) signaling, and regulation of the actin cytoskeleton was also altered during the equilibration process. Collectively, the present study showed that the equilibration step in the bull sperm cryopreservation process was the critical point for sperm proteome, during which a majority of proteomic alterations in sperm occurred. These findings are valuable for developing efficient protocols to minimize protein damage and to improve the quality and fertility of cryopreserved bull spermatozoa.
Collapse
Affiliation(s)
- Ramasamy Arunkumar
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
- *Correspondence: Arumugam Kumaresan, ;
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumalaisamy Karuthadurai
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council for Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Kaya A, Dogan S, Vargovic P, Kutchy NA, Ross P, Topper E, Oko R, van der Hoorn F, Sutovsky P, Memili E. Sperm proteins ODF2 and PAWP as markers of fertility in breeding bulls. Cell Tissue Res 2022; 387:159-171. [PMID: 34762184 DOI: 10.1007/s00441-021-03529-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Low fertility is the single most important factor limiting livestock reproductive performance, adversely affecting the cattle industry and causing millions of dollars of economic loss. In the livestock industry, male fertility is of crucial importance for the reproductive performance of livestock. However, there is a lack of reliable biomarkers to predict bull fertility in artificial insemination service. The objective of this study was to identify sperm proteins as biomarkers for bull fertility. To discover candidate sperm quality biomarkers, sperm proteome profiling was conducted in extreme high- and extreme low-fertile bulls selected from a pool of 1000 AI sires with varied fertility. Thirty-two differentially expressed proteins were identified. Among them, high levels of sperm outer dense fiber of sperm tails 2 (ODF2) and post-acrosomal assembly of sperm head protein (PAWP/WBP2NL) represented the most extreme differences in quantity between high- and low-fertility bulls. Protein immunodetection and flow cytometry used to validate these putative fertility markers in a combined cohort of 154 AI sires. Both ODF2 and PAWP correlated significantly with fertility. In conclusion, ODF2 and PAWP can be used to assess semen quality and predict sire fertility.
Collapse
Affiliation(s)
- Abdullah Kaya
- Department of Artificial Insemination and Reproduction, Selcuk University, Konya, Turkey
| | - Sule Dogan
- Animal and Dairy Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Peter Vargovic
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Naseer Ahmad Kutchy
- Animal and Dairy Sciences, Mississippi State University, Starkville, MS, 39762, USA
- St. George's University, St. George's, Grenada
| | - Pablo Ross
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | | | | | - Frans van der Hoorn
- Department of Biochemistry Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| | - Erdogan Memili
- Animal and Dairy Sciences, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
12
|
Paul N, Talluri TR, Nag P, Kumaresan A. Epididymosomes: A potential male fertility influencer. Andrologia 2021; 53:e14155. [PMID: 34213814 DOI: 10.1111/and.14155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
During transit and storage in epididymis, spermatozoa undergo final maturation, acquire motility, functional competence and the ability to fertilise an oocyte. Epididymal secretions contain a complex biochemical milieu of diverse inorganic ions, proteins, metabolites and other molecules. Since it is believed that spermatozoa are translationally silent, proteins appearing in them are thought to be synthesised elsewhere, including epididymis, and then incorporated to the cells. One of the important mechanisms suggested to be involved in transfer of epididymal secretions to spermatozoa is through exosomes called epididymosomes. Epididymosomes released from the epididymal epithelium contain proteins, noncoding RNAs and distinct set of lipids that are transferred to spermatozoa while they pass through the different epididymal regions. Owing to the importance of these molecules for sperm maturation and fertilising ability, research on epididymosomes has gained increasing attention during the last decade. This review is focused on epididymosomes, with emphasis on recent advances in the understanding of mechanisms of epididymosomal cargo transfer to spermatozoa and potential roles of epididymosomes in sperm function and beyond. Possibilities of utilising the molecular signatures of epididymosomes as a tool for male fertility assessment are also discussed.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
13
|
Mateo-Otero Y, Viñolas-Vergés E, Llavanera M, Ribas-Maynou J, Roca J, Yeste M, Barranco I. Aldose Reductase B1 in Pig Seminal Plasma: Identification, Localization in Reproductive Tissues, and Relationship With Quality and Sperm Preservation. Front Cell Dev Biol 2021; 9:683199. [PMID: 34169077 PMCID: PMC8217816 DOI: 10.3389/fcell.2021.683199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
Aldose reductase B1 (AKR1B1), a NADPH-dependent enzyme that belongs to the aldo-keto reductase protein superfamily, has been reported to be involved in both male and female reproductive physiology. The objectives of this study were: (1) to evaluate the concentration of SP-AKR1B1 in pig ejaculate fractions; (2) to describe the immunohistochemical localization of AKR1B1 alongside the boar genital tract; (3) to evaluate the relationship between SP-AKR1B1 and sperm quality/functionality parameters. Ejaculates from seven boars (one ejaculate per boar) were collected in separate portions [the first 10 mL of the sperm rich fraction (SRF-P1), the rest of the SRF (SRF-P2), and the post-SRF (PSRF)], and the concentration of SP-AKR1B1 was assessed using an enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and immunoblotting targeting was conducted in the reproductive tissues of these boars. Additionally, the entire ejaculates of 14 boars (one ejaculate per boar) were collected and split into three separate aliquots for: (i) SP-AKR1B1 quantification; (ii) assessment of sperm concentration and morphology; and (iii) evaluation of sperm quality and functionality parameters upon ejaculate collection (0 h) and after 72 h of liquid storage at 17°C. Concentration of AKR1B1 in the SP of SRF-P1 (458.2 ± 116.33 ng/mL) was lower (P < 0.05) than that of SRF-P2 (1105.0 ± 229.80 ng/mL) and PSRF (1342.4 ± 260.18 ng/mL). Monomeric and dimeric AKR1B1 forms were expressed alongside the reproductive tissues, except in the bulbourethral glands. No relationship between SP-AKR1B1 and sperm quality/functionality parameters was observed either at 0 h or after 72 h of storage at 17°C. In conclusion, AKR1B1 is expressed in the reproductive organs of boars (except bulbourethral glands) and a higher concentration is found in the PSRF suggesting that seminal vesicles would be the main secretory source. However, this enzyme does not appear to be related to sperm quality/functionality or to the sperm ability to withstand liquid storage at 17°C.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estel Viñolas-Vergés
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
The impact of regular sperm donation on bulls' seminal plasma hormonal profile and phantom response. Sci Rep 2021; 11:11116. [PMID: 34045555 PMCID: PMC8160321 DOI: 10.1038/s41598-021-90630-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to analyze the relationship between the concentration of hormones in the seminal plasma, the bull maintenance system in the insemination station, and the regularity of sperm donation and the response to the phantom (libido level). An additional goal was to determine whether there is a relationship between the hormonal profile in the blood, the sperm plasma, the oxidative and antioxidant profile in the blood of bulls and the biometry of their testicles and scrotum, as well as the quality of their sperm in both different seasons and intensities of reproductive use. For the study, 220 healthy and sexually mature Polish Holstein-Friesian bulls were used. They all had normal libido and were fed equally. The animals were grouped according to the scheme: young (16-20 month/n = 60) and old (26-30 month/n = 60) including: individually housed (n = 30) and group housed (n = 30) young, old individually housed (n = 30) and group housed (n = 30) (n total animals = 120); young animals donating semen once a week (every Thursday) (n = 25) and sporadically (once every two months on a random day of the week) (n = 25), old animals donating semen once a week (every Thursday) (n = 25 ) and sporadic donors (once every two months on a random day of the week) (n = 25) (n total animals = 100). When analyzing the results of this study, it should be stated that regular use has a positive effect on the secretion of sex hormones in bulls. Higher levels of testosterone and lower levels of estradiol and prostaglandins resulted in higher sexual performance, expressed by a stronger response to the phantom. The differences in favor of regular use were independent of the bull's age. The results of our research illustrate that the quality of semen and its freezing potential may depend on the season and frequency of its collection, as well as on the age of the males.
Collapse
|
15
|
Prakash MA, Kumaresan A, Ebenezer Samuel King JP, Nag P, Sharma A, Sinha MK, Kamaraj E, Datta TK. Comparative Transcriptomic Analysis of Spermatozoa From High- and Low-Fertile Crossbred Bulls: Implications for Fertility Prediction. Front Cell Dev Biol 2021; 9:647717. [PMID: 34041237 PMCID: PMC8141864 DOI: 10.3389/fcell.2021.647717] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Crossbred bulls produced by crossing Bos taurus and Bos indicus suffer with high incidence of infertility/subfertility problems; however, the etiology remains poorly understood. The uncertain predictability and the inability of semen evaluation techniques to maintain constant correlation with fertility demand for alternate methods for bull fertility prediction. Therefore, in this study, the global differential gene expression between high- and low-fertile crossbred bull sperm was assessed using a high-throughput RNA sequencing technique with the aim to identify transcripts associated with crossbred bull fertility. Crossbred bull sperm contained transcripts for 13,563 genes, in which 2,093 were unique to high-fertile and 5,454 were unique to low-fertile bulls. After normalization of data, a total of 776 transcripts were detected, in which 84 and 168 transcripts were unique to high-fertile and low-fertile bulls, respectively. A total of 176 transcripts were upregulated (fold change > 1) and 209 were downregulated (<1) in low-fertile bulls. Gene ontology analysis identified that the sperm transcripts involved in the oxidative phosphorylation pathway and biological process such as multicellular organism development, spermatogenesis, and in utero embryonic development were downregulated in low-fertile crossbred bull sperm. Sperm transcripts upregulated and unique to low-fertile bulls were majorly involved in translation (biological process) and ribosomal pathway. With the use of RT-qPCR, selected sperm transcripts (n = 12) were validated in crossbred bulls (n = 12) with different fertility ratings and found that the transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes was significantly (p < 0.05) lower in low-fertile bulls than high-fertile bulls and was positively (p < 0.05) correlated with conception rate. It is inferred that impaired oxidative phosphorylation could be the predominant reason for low fertility in crossbred bulls and that transcriptional abundance of ZNF706, CRISP2, TNP2, and TNP1 genes could serve as potential biomarkers for fertility in crossbred bulls.
Collapse
Affiliation(s)
- Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Bengaluru, India
| | - Tirtha Kumar Datta
- Animal Genomics Laboratory, Indian Council of Agricultural Research (ICAR), National Dairy Research Institute, Karnal, India
| |
Collapse
|
16
|
Tomar AK, Rajak SK, Aslam Mk M, Chhikara N, Ojha SK, Nayak S, Chhillar S, Kumaresan A, Yadav S. Sub-fertility in crossbred bulls: Identification of proteomic alterations in spermatogenic cells using high throughput comparative proteomics approach. Theriogenology 2021; 169:65-75. [PMID: 33940217 DOI: 10.1016/j.theriogenology.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The present study was carried out to compare the proteomic profiles of spermatogenic cells of crossbred and zebu cattle in an effort to understand the possible reasons for a higher incidence of sub-fertility in crossbred bulls. The spermatogenic cells collected from the testes of pre-pubertal (6 mo) and adult (24 mo) crossbred and zebu males through fine needle aspiration were proliferated in vitro, and proteomic profiling was done using a shotgun proteomics approach. The age- and species-specific variations in the expression level of proteins were identified in spermatogenic cells. The number of differentially expressed proteins (DEPs) identified in pre-pubertal zebu and crossbred was 546, while 579 DEPs were identified between adult zebu and crossbred bulls. Out of these, 194 DEPS were common to these groups and 40 DEPs displayed a fold change ≥2. However, only 20 proteins exhibited similar expression variation trends (upregulated or downregulated) among pre-pubertal as well as adult zebu and crossbred bulls. Out of these 20 DEPs, 13 proteins were upregulated, and 7 proteins were downregulated in spermatogenic cells of zebu compared to crossbred bulls. Among the upregulated proteins were RPLP2, PAXIP1, calumenin, prosaposin, GTF2F1, TMP2, ubiquitin conjugation factor E4A, COL1A2, vimentin, protein FAM13A, peripherin, GFPT2, and GRP78. Seven proteins that were downregulated in zebu bulls compared to crossbred included APOA1, G patch domain-containing protein 1, NAD P transhydrogenase mitochondrial, glutamyl aminopeptidase, synaptojanin 1 fragment, Arf GAP with SH3 domain ANK repeat and PH domain-containing protein 1, and protein transport protein sec16B. It was inferred that the proteins associated with sperm function and fertilization processes, such as calumenin, prosaposin, vimentin, GRP78, and APOA1 could be studied further to understand the precise cause of subfertility in crossbred bulls.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shailendra Kumar Rajak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Muhammad Aslam Mk
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjay Kumar Ojha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Samiksha Nayak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Chhillar
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
17
|
Marker-assisted selection vis-à-vis bull fertility: coming full circle-a review. Mol Biol Rep 2020; 47:9123-9133. [PMID: 33099757 DOI: 10.1007/s11033-020-05919-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Bull fertility is considered an indispensable trait, as far as farm economics is concerned since it is the successful conception in a cow that provides calf crop, along with the ensuing lactation. This ensures sustainability of a dairy farm. Traditionally, bull fertility did not receive much attention by the farm managers and breeding animals were solely evaluated based on phenotypic predictors, namely, sire conception rate and seminal parameters in bull. With the advent of the molecular era in animal breeding, attempts were made to unravel the genetic complexity of bull fertility by the identification of genetic markers related to the trait. Marker-Assisted Selection (MAS) is a methodology that aims at utilizing the genetic information at markers and selecting improved populations for important traits. Traditionally, MAS was pursued using a candidate gene approach for identifying markers related to genes that are already known to have a physiological function related to the trait but this approach had certain shortcomings like stringent criteria for significance testing. Now, with the availability of genome-wide data, the number of markers identified and variance explained in relation to bull fertility has gone up. So, this presents a unique opportunity to revisit MAS by selection based on the information of a large number of genome-wide markers and thus, improving the accuracy of selection.
Collapse
|
18
|
Rather HA, Kumaresan A, Nag P, Kumar V, Nayak S, Batra V, Ganaie BA, Baithalu RK, Mohanty TK, Datta TK. Spermatozoa produced during winter are superior in terms of phenotypic characteristics and oviduct explants binding ability in the water buffalo (Bubalus bubalis). Reprod Domest Anim 2020; 55:1629-1637. [PMID: 32945545 DOI: 10.1111/rda.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023]
Abstract
Although reduced reproductive efficiency during summer has been well documented in buffaloes, the reason for the same is yet to be understood. The present study was conducted to identify the subtle differences in sperm phenotypic characteristics (motility, membrane integrity, acrosome reaction and lipid peroxidation status), oviduct binding ability and expression of fertility-associated genes (AK 1, ATP5D, CatSper 1, Cytochrome P450 aromatase, SPP1 and PEBP1) between winter and summer seasons in buffaloes. Cryopreserved spermatozoa from 6 Murrah buffalo bulls (3 ejaculates/bull/season) were utilized for the study. Real-time quantitative PCR was performed for assessing the expression patterns of select fertility-associated genes. The proportion of motile and membrane intact spermatozoa was significantly higher (p < .05) in winter as compared to summer ejaculates. The proportion of moribund and lipid peroxidized spermatozoa was significantly lower (p < .05) in winter ejaculates as compared to summer. The sperm-oviduct binding index was significantly lower (p < .01) when spermatozoa from summer ejaculates were used as compared to winter ejaculates. The expression of fertility-associated genes did not differ significantly between the two seasons except for PEPB1; the transcriptional abundance of PEPB1 was significantly (p < .05) lower in summer as compared to winter season. It was inferred that buffalo spermatozoa produced during winter season were superior in terms of cryotolerance, membrane and acrosome integrity, lipid peroxidation status and the ability to bind with oviduct explants.
Collapse
Affiliation(s)
- Haneef Ahmad Rather
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Pradeep Nag
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vimlesh Kumar
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Bilal Ahmad Ganaie
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Rubina K Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
19
|
Elango K, Kumaresan A, Sharma A, Nag P, Prakash MA, Sinha MK, Manimaran A, Peter ESKJ, Jeyakumar S, Selvaraju S, Ramesha KP, Datta TK. Sub-fertility in crossbred bulls: deciphering testicular level transcriptomic alterations between zebu (Bos indicus) and crossbred (Bos taurus x Bos indicus) bulls. BMC Genomics 2020; 21:502. [PMID: 32693775 PMCID: PMC7372791 DOI: 10.1186/s12864-020-06907-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The incidence of poor semen quality and sub-fertility/infertility is higher in crossbred as compared to Zebu males. Several attempts have been made to understand the possible reasons for higher incidence of fertility problems in crossbred males, at sperm phenotype, proteome and genome level but with variable results. Since the quality of the ejaculated spermatozoa is determined by the testicular environment, assessing the testicular transcriptome between these breeds would help in identifying the possible mechanisms associated with infertility in crossbred bulls. However, such information is not available. We performed global transcriptomic profiling of testicular tissue from crossbred and Zebu bulls using Agilent Bos taurus GXP 8X60k AMADID: 29411 array. To the best of our knowledge, this is the first study comparing the testicular mRNAs between crossbred and Zebu bulls. RESULTS Out of the 14,419 transcripts detected in bovine testis, 1466 were differentially expressed between crossbred and Zebu bulls, in which 1038 were upregulated and 428 were downregulated in crossbred bulls. PI4KB and DPY19L2 genes, reported to be involved in sperm capacitation and acrosome formation respectively, were among the top 10 downregulated transcripts in crossbred testis. Genes involved in ubiquitination and proteolysis were upregulated, while genes involved in cell proliferation, stem cell differentiation, stem cell population maintenance, steroidogenesis, WNT signalling, protein localization to plasma membrane, endocannabinoid signalling, heparin binding, cAMP metabolism and GABA receptor activity were downregulated in crossbred testis. Among the 10 genes validated using qPCR, expression of CCNYL, SOX2, MSMB, SPATA7, TNP1, TNP2 and CRISP2 followed the same trend as observed in microarray analysis with SPATA7 being significantly downregulated and transition proteins (TNP1, TNP2) being significantly upregulated in crossbred bulls. CONCLUSIONS Abundant proteolysis by ubiquitination and downregulation of WNT signaling, cell proliferation, differentiation and steroidogenesis might be associated with higher incidence of poor semen quality and/or sub-fertility/infertility in crossbred bulls as compared to Zebu bulls. Downregulation of SPATA7 (Spermatogenesis Associated 7) and upregulation of transition proteins (TNP1 and TNP2) in crossbred bull testis might be associated with impaired spermatogenesis processes including improper chromatin compaction in crossbred bulls.
Collapse
Affiliation(s)
- Kamaraj Elango
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Ankur Sharma
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Pradeep Nag
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Mani Arul Prakash
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ayyasamy Manimaran
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sakthivel Jeyakumar
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Sellappan Selvaraju
- Reproductive physiology Laboratory, ICAR - National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, 560030, India
| | - Kerekoppa P Ramesha
- Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
20
|
Codognoto VM, Yamada PH, Schmith RA, Rydygier de Ruediger F, de Paula Freitas-Dell'Aqua C, de Souza FF, Brochine S, do Carmo LM, Vieira AF, Oba E. Cross comparison of seminal plasma proteins from cattle and buffalo (Bubalus bubalis). Reprod Domest Anim 2019; 55:81-92. [PMID: 31733131 DOI: 10.1111/rda.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022]
Abstract
The objective of this study was to evaluate seminal plasma proteins from cattle and buffalo (Bubalus bubalis), to identify differences between related species. Sixteen buffaloes and 16 cattle between 30 and 60 months of age were used. Semen collection was performed by electroejaculation, followed by macroscopic and microscopic subjective analyses. After analysis, the samples were centrifuged at 800 g for 10 min, and the supernatant (seminal plasma) was recentrifuged at 10,000 g for 30 min at 4°C. The total protein concentration was determined by the Bradford method, and the proteins were digested in solution for mass spectrometry (nLC-MS/MS). Multivariate statistical analysis was used to evaluate the proteomics results by non-hierarchical clustering the considering exponentially modified protein abundance index (emPAI). Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used for clustering. Proteomics identified 78 proteins, and multivariate analysis showed 4 that were over-expressed in buffaloes (cystatin C, prosaposin, peptide YY and keratin type II cytoskeletal 5) and 9 in cattle (spermadhesin-1, seminal plasma protein PDC-109, ribonuclease 4, metalloproteinase inhibitor 2, acrosin inhibitor 1, seminal ribonuclease, C-type natriuretic peptide, angiogenin-1 and osteopontin). Among the proteins identified in seminal plasma, the C-type natriuretic peptide and metalloproteinase inhibitors were described for the first time in buffaloes. Some protease inhibitors were found over-expressed in buffaloes, and important proteins in seminal plasma of cattle were not identified or were found at lower expression levels in buffaloes, which can contribute to reproductive performance in this species.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Paulo Henrique Yamada
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Rúbia Alves Schmith
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Rydygier de Ruediger
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila de Paula Freitas-Dell'Aqua
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Fabiana Ferreira de Souza
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzane Brochine
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Lucas Monteiro do Carmo
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Andressa Filaz Vieira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Eunice Oba
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
21
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
22
|
M K MA, Kumaresan A, Yadav S, Mohanty TK, Datta TK. Comparative proteomic analysis of high- and low-fertile buffalo bull spermatozoa for identification of fertility-associated proteins. Reprod Domest Anim 2019; 54:786-794. [PMID: 30820981 DOI: 10.1111/rda.13426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/17/2019] [Indexed: 01/13/2023]
Abstract
The present study identified few potential proteins in the spermatozoa of buffalo bulls that can be used as an aid in fertility determination through comparative proteomics. The sperm proteome of high-fertile buffalo bulls was compared with that of low-fertile buffalo bulls using two-dimensional difference gel electrophoresis (2D-DIGE), and the differentially expressed proteins were identified through mass spectrometric method. The protein interaction network and the functional bioinformatics analysis of differentially expressed proteins were also carried out. In the spermatozoa of high-fertile bulls, 10 proteins were found overexpressed and 15 proteins were underexpressed at the level of twofold or more (p ≤ 0.05). The proteins overexpressed in high-fertile spermatozoa were PDZD8, GTF2F2, ZNF397, KIZ, LOH12CR1, ACRBP, PRSS37, CYP11B2, F13A1 and SPO11, whereas those overexpressed in low-fertile spermatozoa were MT1A, ATP5F1, CS, TCRB, PRODH2, HARS, IDH3A, SRPK3, Uncharacterized protein C9orf9 homolog isoform X4, TUBB2B, GPR4, PMP2, CTSL1, TPPP2 and EGFL6. The differential expression ranged from 2.0- to 6.1-fold between the two groups, where CYP11B2 was high abundant in high-fertile spermatozoa and MT1A was highly abundant in low-fertile spermatozoa. Most of the proteins overexpressed in low-fertile spermatozoa were related to energy metabolism and capacitation factors, pointing out the possible role of pre-mature capacitation and cryo-damages in reducing the fertility of cryopreserved buffalo spermatozoa.
Collapse
Affiliation(s)
- Muhammad Aslam M K
- Animal Reproduction, Gynecology & Obstetrics, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Animal Reproduction, Gynecology & Obstetrics, National Dairy Research Institute, Karnal, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar K Mohanty
- Animal Reproduction, Gynecology & Obstetrics, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
23
|
Muhammad Aslam M, Sharma VK, Pandey S, Kumaresan A, Srinivasan A, Datta T, Mohanty T, Yadav S. Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology 2018; 119:43-51. [DOI: 10.1016/j.theriogenology.2018.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/07/2018] [Accepted: 06/24/2018] [Indexed: 01/24/2023]
|
24
|
Kumaresan A, Johannisson A, Bergqvist AS. Sperm function during incubation with oestrus oviductal fluid differs in bulls with different fertility. Reprod Fertil Dev 2018; 29:1096-1106. [PMID: 27112984 DOI: 10.1071/rd15474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
Spermatozoa undergo several modifications in the oviduct before acquiring fertilising capacity. Although spermatozoa are exposed to similar conditions in the oviduct, the speed of the response varies with the male and the state of the spermatozoa. We hypothesised that spermatozoa from bulls with different fertility may differ in their ability to respond to oviductal fluid (ODF). Frozen-thawed spermatozoa from four bulls were incubated with oestrus oviductal fluid (OODF) for 6h. Sperm kinematics, tyrosine phosphorylation, phosphorylation patterns, capacitation and acrosome reaction were analysed at hourly intervals. The amplitude of lateral head displacement (ALH) and straightness coefficient (STR) were higher (P<0.05) in bulls with higher fertility compared with those with lower fertility, at 1-4h of incubation. At 4h of incubation and onwards, spermatozoa from bulls with higher fertility showed a lower degree (P<0.05) of tyrosine phosphorylation and higher degree of capacitation and acrosome reaction. At least five tyrosine-phosphorylated sperm proteins were detected in all bulls. However, the expression of two phosphorylated sperm proteins (183 and 109 kDa) was upregulated in bulls with lower fertility. It may be concluded that cryopreserved spermatozoa from high- and low- fertile bulls differ in their ability to respond to OODF. This may help in developing tools for assessing fertility of bulls, once validated in more animals.
Collapse
Affiliation(s)
- A Kumaresan
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A Johannisson
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| | - A-S Bergqvist
- Division of Reproduction, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
| |
Collapse
|
25
|
Abstract
The ability to predict the fertility of bulls before semen is released into the field has been a long-term objective of the animal breeding industry. However, the recent shift in the dairy industry towards the intensive use of young genomically selected bulls has increased its urgency. Such bulls, which are often in the highest demand, are frequently only used intensively for one season and consequently there is limited time to track their field fertility. A more pressing issue is that they produce fewer sperm per ejaculate than mature bulls and therefore there is a need to reduce the sperm number per straw to the minimum required without a concomitant reduction in fertility. However, as individual bulls vary in the minimum number of sperm required to achieve their maximum fertility, this cannot be currently achieved without extensive field-testing. Although an in vitro semen quality test, or combination of tests, which can accurately and consistently determine a bull's fertility and the optimum sperm number required represent the 'holy grail' in terms of semen assessment, this has not been achieved to date. Understanding the underlying causes of variation in bull fertility is a key prerequisite to achieving this goal. In this review, we consider the reliability of sire conception rate estimates and then consider where along the pregnancy establishment axis the variation in reproductive loss between bulls occurs. We discuss the aetiology of these deficiencies in sperm function and propose avenues for future investigation.
Collapse
|
26
|
Tajmul M, Parween F, Singh L, Mathur SR, Sharma JB, Kumar S, Sharma DN, Yadav S. Identification and validation of salivary proteomic signatures for non-invasive detection of ovarian cancer. Int J Biol Macromol 2017; 108:503-514. [PMID: 29222021 DOI: 10.1016/j.ijbiomac.2017.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
Ovarian cancer (OC) is one of the most lethal cancers among all gynecological malignancies. An effective and non-invasive screening approach is needed urgently to reduce high mortality rate. The purpose of this study was to identify the salivary protein signatures (SPS) for non-invasive detection of ovarian cancer. Differentially expressed SPS were identified by fluorescence-based 2D-DIGE coupled with MALDI/TOF-MS. The expression levels of three differential proteins (Lipocalin-2, indoleamine-2, 3-dioxygenase1 (IDO1) and S100A8) were validated using western blotting and ELISA. Immunohistochemistry and qRT-PCR were performed in an independent cohort of ovarian tumor tissues. 25 over expressed and 19 under expressed (p<0.05) proteins between healthy controls and cancer patients were identified. Lipocalin-2, IDO1 and S100A8 were selected for initial verification and successfully verified by immunoassay. Diagnostic potential of the candidate biomarkers was evaluated by ROC analysis. The selected biomarkers were further validated by immunohistochemistry in an independent cohort of ovarian tissues. The global expression of selected targets was also analyzed by microarray and validated using qRT-PCR to strengthen our hypothesis. Tumor secreted proteins identified by 'dual-omics' strategy, whose concentration are significantly high in ovarian cancer patients have obvious potential to be used as screening biomarker after large scale validation.
Collapse
Affiliation(s)
- Md Tajmul
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Farhat Parween
- Hybridoma Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Lata Singh
- Department of Ocular Pathology, Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - J B Sharma
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - D N Sharma
- Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
27
|
Udroiu I, Sgura A. Cytogenetic tests for animal production: state of the art and perspectives. Anim Genet 2017; 48:505-515. [DOI: 10.1111/age.12581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
Affiliation(s)
- I. Udroiu
- Dipartimento di Scienze; Università Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| | - A. Sgura
- Dipartimento di Scienze; Università Roma Tre; Viale G. Marconi 446 00146 Rome Italy
| |
Collapse
|
28
|
Kumaresan A, Johannisson A, Al-Essawe EM, Morrell JM. Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. J Dairy Sci 2017; 100:5824-5836. [DOI: 10.3168/jds.2016-12484] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/12/2017] [Indexed: 01/09/2023]
|
29
|
Mukherjee S, Bandyopadhyay A. Proteomics in India: the clinical aspect. Clin Proteomics 2016; 13:21. [PMID: 27822170 PMCID: PMC5097398 DOI: 10.1186/s12014-016-9122-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Proteomics has emerged as a highly promising bioanalytical technique in various aspects of applied biological research. In Indian academia, proteomics research has grown remarkably over the last decade. It is being extensively used for both basic as well as translation research in the areas of infectious and immune disorders, reproductive disorders, cardiovascular diseases, diabetes, eye disorders, human cancers and hematological disorders. Recently, some seminal works on clinical proteomics have been reported from several laboratories across India. This review aims to shed light on the increasing use of proteomics in India in a variety of biological conditions. It also highlights that India has the expertise and infrastructure needed for pursuing proteomics research in the country and to participate in global initiatives. Research in clinical proteomics is gradually picking up pace in India and its future seems very bright.
Collapse
Affiliation(s)
- Somaditya Mukherjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
30
|
Almadaly EA, Farrag FA, Saadeldin IM, El-Magd MA, El-Razek IMA. Relationship between total protein concentration of seminal plasma and sperm characteristics of highly fertile, fertile and subfertile Barki ram semen collected by electroejaculation. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Singh RK, Kumaresan A, Chhillar S, Rajak SK, Tripathi UK, Nayak S, Datta TK, Mohanty TK, Malhotra R. Identification of suitable combinations of in vitro sperm-function test for the prediction of fertility in buffalo bull. Theriogenology 2016; 86:2263-2271.e1. [PMID: 27555524 DOI: 10.1016/j.theriogenology.2016.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/13/2023]
Abstract
The present study assessed sperm functional characteristics in the frozen-thawed semen of buffalo bulls and estimated their relationship with field fertility. Frozen semen samples from three different freezing operations each from nine Murrah buffalo bulls were used for the assessment of different sperm functions related to fertilizing potential. Bulls were classified into high (n = 2), medium (n = 5), and low (n = 2) fertile based on adjusted field fertility. The sperm functions estimated included membrane integrity using carboxyfluorescein diacetate-propidium iodide, acrosome reaction status using fluorescein isothiocyanate peanut agglutinine, status of apoptosis using Annexin-V, protamine deficiency using Chromomycin A3, membrane stability using Merocyanine 540 and lipid peroxidation status using 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene. The relationship between the proportion of live acrosome-intact spermatozoa and fertility was positive and significant (r = 0.59; P = 0.001). The proportion of moribund spermatozoa showed a significantly negative correlation with fertility (r = -0.50; P = 0.008). Similarly, the relationship of spermatozoa with unstable membrane (r = -0.51; P = 0.007), necrotic (r = - 0.42; P = 0.028), early necrotic (r = -0.42; P = 0.031), and apoptotic spermatozoa (r = -0.39; P = 0.046) with bull fertility was negative and significant. The correlation between the protamine-deficient spermatozoa and fertility was negative, but not significant. Among different combinations of tests, live acrosome-intact spermatozoa and lipid peroxidation status of spermatozoa revealed high positive correlation with buffalo bull fertility (adjusted R2 = 0.73, C[p] = 0.80). These preliminary findings may help in developing tools for assessing fertility of buffalo bulls, once validated in more animals.
Collapse
Affiliation(s)
- Raushan K Singh
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - A Kumaresan
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India.
| | - Shivani Chhillar
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Shailendra K Rajak
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Utkarsh K Tripathi
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Samiksha Nayak
- Theriogenology Lab, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - T K Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - R Malhotra
- Dairy Economics, Statistics & Management Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
32
|
Differential abundances of four forms of Binder of SPerm 1 in the seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability. Theriogenology 2016; 86:766-777.e2. [PMID: 27118515 DOI: 10.1016/j.theriogenology.2016.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/14/2016] [Accepted: 02/27/2016] [Indexed: 01/24/2023]
Abstract
The Binder of SPerm 1 (BSP1) protein is involved in the fertilization and semen cryopreservation processes and is described to be both beneficial and detrimental to sperm. Previously, the relationship of BSP1 with freezability events has not been completely understood. The objective of this work was to determine the differential abundance of the forms of the BSP1 protein in cryopreserved seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability using proteomics. A wide cohort of adult bulls with high genetic value from an artificial insemination center was used as donors of high quality, fresh semen. Nine bulls presenting different patterns of semen freezability were selected. Two-dimensional gel electrophoresis showed differential abundance in a group of seven protein spots in the frozen/thawed seminal plasma from the bulls, ranging from 15 to 17 kDa, with pI values from 4.6 to 5.8. Four of these spots were confirmed to be BSP1 using mass spectrometry, proteomics, biochemical, and computational analysis (Tukey's test at P < 0.05). The protein spot weighing 15.52 ± 0.53 kDa with a pI value of 5.78 ± 0.12 is highlighted by its high abundance in bulls with low semen freezability and its absence in bulls presenting high semen freezability. This is the first report showing that more than two forms of BSP1 are found in the seminal plasma of Nelore adult bulls and not all animals have a similar abundance of each BSP1 form. Different BSP1 forms may be involved in different events of fertilization and the cryopreservation process.
Collapse
|
33
|
Comparative proteomic analysis of Taurine, Indicine, and crossbred (Bos taurus × Bos indicus) bull spermatozoa for identification of proteins related to sperm malfunctions and subfertility in crossbred bulls. Theriogenology 2015; 84:624-33. [DOI: 10.1016/j.theriogenology.2015.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
|
34
|
Tripathi UK, Chhillar S, Kumaresan A, Aslam MKM, Rajak SK, Nayak S, Manimaran A, Mohanty TK, Yadav S. Morphometric evaluation of seminiferous tubule and proportionate numerical analysis of Sertoli and spermatogenic cells indicate differences between crossbred and purebred bulls. Vet World 2015; 8:645-50. [PMID: 27047150 PMCID: PMC4774728 DOI: 10.14202/vetworld.2015.645-650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 11/29/2022] Open
Abstract
Aim: The present study compared the testicular cytology and histology between crossbred (Holstein–Friesian [HF] × Tharparkar) and purebred (HF and Tharparkar) bulls to find out differences if any. Materials and Methods: Four peripubertal bulls from each breed were utilized for the study. Through percutaneous needle aspiration biopsy, Sertoli and spermatogenic cells were extracted, and morphometry was studied. For histological studies, testicular tissues obtained through unilateral castration were utilized. Sertoli cells specific GATA4 antibody was used to study the population of Sertoli cells in the seminiferous tubule through immunofluorescence. Results: The testicular weight, volume, and scrotal circumference differed significantly among the breeds. The diameter and area of the seminiferous tubule was high in HF, followed by Karan Fries (KF), and Tharparkar bulls. However, the degree of compactness, based on qualitative evaluation, was high in Tharparkar followed by KF and HF bulls. The intensity of Leydig cells was higher in Tharparkar bulls followed by KF and HF. The proportion of Sertoli cells was higher (p<0.05) in HF and Tharparkar bulls compared to KF bulls. Conclusion: It may be concluded that variations exist in testicular components of the breeds studied and the proportion of Sertoli cells in relation to spermatogenic cells was significantly lower in crossbred bulls compared to purebred bulls.
Collapse
Affiliation(s)
- Utkarsh K Tripathi
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Shivani Chhillar
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - A Kumaresan
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - M K Muhammad Aslam
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Rajak
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - Samiksha Nayak
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - A Manimaran
- Theriogenology Laboratory, Animal Reproduction, Gynaecology & Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - T K Mohanty
- Artificial Breeding Research Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Zingde SM. Has Proteomics come of age in India? J Proteomics 2015; 127:3-6. [PMID: 25748142 DOI: 10.1016/j.jprot.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
|
36
|
Kumar A, Kroetsch T, Blondin P, Anzar M. Fertility-associated metabolites in bull seminal plasma and blood serum:1H nuclear magnetic resonance analysis. Mol Reprod Dev 2015; 82:123-31. [DOI: 10.1002/mrd.22450] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Ajeet Kumar
- Canadian Animal Genetic Resource Program; Agriculture and Agri-Food Canada; Saskatoon Research Center; Saskatoon Saskatchewan Canada
- Department of Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| | | | | | - Muhammad Anzar
- Canadian Animal Genetic Resource Program; Agriculture and Agri-Food Canada; Saskatoon Research Center; Saskatoon Saskatchewan Canada
- Department of Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon Saskatchewan Canada
| |
Collapse
|