1
|
Ren Y, Tao Y, Sun Z, Wang Y, Li W, He Z, Wang G, Yang Y, Hou J. Evaluation of Female Recipient Infertility and Donor Spermatogonial Purification for Germ Cell Transplantation in Paralichthys olivaceus. Animals (Basel) 2024; 14:2887. [PMID: 39409837 PMCID: PMC11476266 DOI: 10.3390/ani14192887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Since the advent of germ cell transplantation (GCT), it has been widely used in shortening the fish breeding cycle, sex-controlled breeding and the protection of rare and endangered fish. In this study, the effectiveness of female sterile recipient preparation and donor stem cell isolation and purification were comprehensively evaluated for spermatogonial stem cell transplantation (SSCT) in Paralichthys olivaceus. The best way to prepare sterile recipients was found to be giving three-year-old fish four intraovarian injections of busulfan (20 mg/kg body weight) combined with exposure to a high temperature (28 °C) after the spawning season compared with the two other ways, which induced apoptosis of most of the endogenous germ cells, resulting in shrinkage of the spawning plate and enlargement of the ovarian lumen. Further analysis showed that both the gonadosomatic index and germ-cell-specific vasa expression were significantly lower than those of the natural-temperature group before treatment (p < 0.05). A high percentage (>60.00%) of spermatogonial stem cells (SSCs) were obtained after isolation and purification and were transplanted into the prepared recipients. After three weeks of SSCT, the numbers of PKH26-labeled SSCs were increased in the ovaries of the recipients. These findings provide a basis for the establishment of an ideal SSCT technique using P. olivaceus females as the recipients, ultimately contributing to the efficient conservation of male germplasm resources and effective breeding.
Collapse
Affiliation(s)
- Yuqin Ren
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yuehong Tao
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding Genetics, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaohui Sun
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yufen Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Weidong Li
- Tangshan Haidu Aquatic Food Co., Ltd., Tangshan 063000, China;
| | - Zhongwei He
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Guixing Wang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Yucong Yang
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (Y.R.); (Y.T.); (Z.S.); (Y.W.); (Z.H.); (G.W.); (Y.Y.)
- Bohai Sea Fishery Research Center, Chinese Academy of Fishery Science, Qinhuangdao 066100, China
| |
Collapse
|
2
|
Cabrita E, Pacchiarini T, Fatsini E, Sarasquete C, Herráez MP. Post-thaw quality assessment of testicular fragments as a source of spermatogonial cells for surrogate production in the flatfish Solea senegalensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1971-1985. [PMID: 37644252 DOI: 10.1007/s10695-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Cryopreservation of germ cells would facilitate the availability of cells at any time allowing the selection of donors and maintaining quality control for further applications such as transplantation and germline recovery. In the present study, we analyzed the efficiency of four cryopreservation protocols applied either to isolated cell suspensions or to testes fragments from Senegalese sole. In testes fragments, the quality of cryopreserved germ cells was analyzed in vitro in terms of cell recovery, integrity and viability, DNA integrity (fragmentation and apoptosis), and lipid peroxidation (malondialdehyde levels). Transplantation of cryopreserved germ cells was performed to check the capacity of cells to in vivo incorporate into the gonadal primordium of Senegalese sole early larval stages (6 days after hatching (dah), pelagic live), during metamorphosis (10 dah) and at post-metamorphic stages (16 dah and 20 dah, benthonic life). Protocols incorporating dimethyl sulfoxide (DMSO) as a cryoprotectant showed higher number of recovered spermatogonia, especially in samples cryopreserved with L-15 + DMSO (0.39 ± 0.18 × 106 cells). Lipid peroxidation and DNA fragmentation were also significantly lower in this treatment compared with other treatments. An important increase in oxidation (MDA levels) was detected in samples containing glycerol as a cryoprotectant, reflected also in terms of DNA damage. Transplantation of L-15 + DMSO cryopreserved germ cells into larvae during early metamorphosis (10 dah, 5.2 mm) showed higher incorporation of cells (27.30 ± 5.27%) than other larval stages (lower than 11%). Cryopreservation of germ cells using testes fragments frozen with L-15 + DMSO was demonstrated to be a useful technique to store Senegalese sole germline.
Collapse
Affiliation(s)
- Elsa Cabrita
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - Tiziana Pacchiarini
- Sea4tech, Incubadora de Alta Tecnología INCUBAZUL, Edificio Europa, Zona Franca de Cádiz, Cádiz, Spain
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Carmen Sarasquete
- Institute of Marine Science of Andalusia- ICMAN.CSIC, Av Republica Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - María Paz Herráez
- Dept. Biologia Molecular, Facultad de Biologia, Universidad de León, 24071, León, Spain
| |
Collapse
|
3
|
Zhou Z, Liu T, Luo T, Zhao Z, Zhu J. Effect of titanium dioxide nanoparticle (TiO 2-NP) exposure in a novel Amur sturgeon Acipenser schrenckii hepatocyte cell line. JOURNAL OF FISH BIOLOGY 2024; 105:894-906. [PMID: 39392126 DOI: 10.1111/jfb.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 10/12/2024]
Abstract
In vitro cell culture is crucial for predicting the toxicity of titanium dioxide nanoparticle (TiO2-NP). However, assessing the toxicity of TiO2-NPs in sturgeon remains difficult given the lack of sufficient cell lines. We established and characterized the first hepatocyte cell line from Acipenser schrenckii liver tissue (ASL). This ASL cell line proliferated well in Dulbecco's modified Eagle's medium at 25°C and 10% fetal bovine serum. ASL cells with a chromosome number of 244 were successfully transfected with the pEGFP-N3 plasmid. The ASL cell line's origin was verified as A. schrenckii through mitochondrial cytochrome C oxidase I and mitochondrial 16S ribosomal RNA (rRNA) sequencing. Using the ASL cell line as an in vitro model, we found that TiO2-NP exposure decreased the viability and promoted the damage of ASL cells (96-h LC50 = 331.8 μg mL-1). Increased reactive oxygen species and malondialdehyde levels in ASL cells suggested oxidative stress under TiO2-NP exposure. We also observed dysregulation of aspartate aminotransferase and alanine aminotransferase levels. By detecting calcium ions and mitochondrial membrane potential indicators, we found that the apoptotic pathway induced by endoplasmic reticulum stress played a major role at low concentrations of TiO2-NP-induced stress. Both mitochondria-mediated and endoplasmic reticulum stress promoted apoptosis under increasing TiO2-NP concentrations. In conclusion, the ASL cell line established in this study is a useful in vitro model for toxicological studies of TiO2-NP exposure in fish.
Collapse
Affiliation(s)
- Zhou Zhou
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, China
| | - Ting Liu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Tianxun Luo
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Zhenxing Zhao
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Hettiarachchi DU, Alston VN, Bern L, Al-Armanazi J, Su B, Shang M, Wang J, Xing D, Li S, Litvak MK, Dunham RA, Butts IAE. Advancing aquaculture: Production of xenogenic catfish by transplanting blue catfish (Ictalurus furcatus) and channel catfish (I. punctatus) stem cells into white catfish (Ameiurus catus) triploid fry. PLoS One 2024; 19:e0302687. [PMID: 38848398 PMCID: PMC11161074 DOI: 10.1371/journal.pone.0302687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient. Xenogenesis for hybrid catfish embryo production has been accomplished using triploid channel catfish as a surrogate. However, having a surrogate species with a shorter maturation period, like white catfish (Ameiurus catus), would result in reduced feed costs, labor costs, and smaller body size requirements, making it a more suitable species for commercial applications where space is limited, and as a model species. Hence, the present study was conducted to assess the effectiveness of triploid white catfish as a surrogate species to transplant blue catfish stem cells (BSCs) and channel catfish stem cells (CSCs). Triploid white catfish fry were injected with either BSCs or CSCs labeled with PKH 26 fluorescence dye from 0 to 12 days post hatch (DPH). No significant differences in weight and length of fry were detected among BSCs and CSCs injection times (0 to 12 DPH) when fry were sampled at 45 and 90 DPH (P > 0.05). The highest survival was reported when fry were injected between 4.0 to 5.5 DPH (≥ 81.2%). At 45 and 90 DPH, cell and cluster area increased for recipients injected from 0 to 5.2 DPH, and the highest cluster area values were reported between 4.0 to 5.2 DPH. Thereafter, fluorescent cell and cluster area in the host declined with no further decrease after 10 DPH. At 45 DPH, the highest percentage of xenogens were detected when fry were injected with BSCs between 4.0 to 5.0 and CSCs between 3.0 to 5.0 DPH. At 90 DPH, the highest number of xenogens were detected from 4.0 to 6.0 DPH when injected with either BSCs or CSCs. The current study demonstrated the suitability of white catfish as a surrogate species when BSCs and CSCs were transplanted into triploid white catfish between 4.0 to 6.0 DPH (27.4 ± 0.4°C). Overall, these findings allow enhanced efficiency of commercializing xenogenic catfish carrying gametes of either blue catfish or channel catfish.
Collapse
Affiliation(s)
- Darshika Udari Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Veronica N. Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Logan Bern
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jacob Al-Armanazi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Matthew K. Litvak
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Rex A. Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
5
|
Zarei S, Ghafouri H, Vahdatiraad L, Moghaddam VA, Sohrabi T, Heidari B. Using heat shock protein (HSP) inducers as an approach to increase the viability of sterlet (Pisces; Acipenseridae; Acipenser ruthenus) cells against environmental diazinon toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133194. [PMID: 38086298 DOI: 10.1016/j.jhazmat.2023.133194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Diazinon (DZN) is an organophosphate pesticide frequently used in agriculture and released into aquatic environments. In this study, sterlet sturgeon cells were exposed to DZN to investigate possible defense mechanisms via HSP induction (HSPi). Liver, kidney, and gill cells of Acipenser ruthenus were isolated and cultured and then treated with HSPi (Pro-Tex®, amygdalin, and a novel pirano-piranazole-based synthesized compound: SZ) in the presence and absence of DZN. MTT assays were used to evaluate the effects of different HSPis and their combinations with DZN. Western blotting analysis was conducted to evaluate HSP27, HSP70, and HSP90 expression patterns in each group. The highest rates of caspase-3 and caspase-8 activities were found in the DZN group, whereas HSPi treatment resulted in the lowest rates. The combination of HSPi+DZN resulted in increased HSP levels and antioxidant parameters but decreased cortisol, immune parameters, and metabolic enzymes. Many of the studied parameters (caspases, acetylcholinesterase, antioxidant, immune, and metabolic parameters) showed significant correlations with HSP expression, indicating that HSPs may be associated with markers of sterlet cell health. The results of this study demonstrate that using HSP inducers may be a powerful and reliable way to increase A. ruthenus resistance prior to exposure to DZN.
Collapse
Affiliation(s)
- Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Leila Vahdatiraad
- Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | | | - Tooraj Sohrabi
- International Sturgeon Research Institute, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Organization (AREEO), Tehran, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, the Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
6
|
Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. BMC Biol 2024; 22:39. [PMID: 38360607 PMCID: PMC10870548 DOI: 10.1186/s12915-024-01842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.
Collapse
Affiliation(s)
- Rigolin Nayak
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Roman Franěk
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
- Department of Genetics, The Silberman Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Audrey Laurent
- Fish Physiology and Genomics Laboratory, INRAE, Campus de Beaulieu, 35000, Rennes, France
| | - Martin Pšenička
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
7
|
Vigoya AAA, Martinez ERM, Digmayer M, de Oliveira MA, Butzge AJ, Rosa IF, Doretto LB, Nóbrega RH. Characterization and enrichment of spermatogonial stem cells of common carp (Cyprinus carpio). Theriogenology 2024; 214:233-244. [PMID: 37939542 DOI: 10.1016/j.theriogenology.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Spermatogenesis is a systematically organized process that ensures uninterrupted sperm production in which the spermatogonial stem cells (SSCs) play a crucial role. However, the existing absence of teleost-specific molecular markers for SSCs presents a notable challenge. Herein we characterized phenotypically the spermatogonial stem cells using specific molecular markers and transmission electron microscopy. Moreover, we also describe a simple method to suppress common carp spermatogenesis using the combination of Busulfan and thermo-chemical treatment, and finally, we isolate and enrich the undifferentiated spermatogonial fraction. Our results showed that C-kit, GFRα1, and POU2 proteins were expressed by germ cells, meanwhile, undifferentiated spermatogonial populations preferentially expressed GFRα1 and POU2. Moreover, the combination of high temperature (35 °C) and Busulfan (40 mg/kg/BW) effectively suppressed the spermatogenesis of common carp males. Additionally, the amh expression analysis showed differences between the control (26 °C) when compared to 35 °C with a single or two Busulfan doses, confirming that the testes were depleted by the association of Busulfan at high temperatures. In an attempt to isolate the undifferentiated spermatogonial fraction, we used the Percoll discontinuous density gradient. Thus, we successfully dissociated the carp whole testes in different cellular fractions; subsequently, we isolated and enriched the undifferentiated spermatogonial population. Therefore, our results suggest that probably both GFRα-1 and POU2 are highly conserved factors expressed in common carp germinative epithelium and that these molecules were well conserved along the evolutionary process. Furthermore, the enriched undifferentiated spermatogonial population developed here can be used in further germ cell transplantation experiments to preserve and propagate valued and endangered fish species.
Collapse
Affiliation(s)
- Angel A A Vigoya
- Aquaculture Center of São Paulo State University, CAUNESP, Jaboticabal, 14884-900, São Paulo, Brazil; Faculty of Veterinary Medicine and Animal Science, San Martín University Foundation (FUSM), Bogotá, 760030, Colombia
| | - Emanuel R M Martinez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Melanie Digmayer
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Marcos A de Oliveira
- Aquaculture Center of São Paulo State University, CAUNESP, Jaboticabal, 14884-900, São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Arno J Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Ivana F Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil
| | - Lucas B Doretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Qingdao, 266071, China.
| | - Rafael H Nóbrega
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, 01049-010, Brazil.
| |
Collapse
|
8
|
Romney ALT, Myers DM, Martin FR, Scanlan TN, Meyers SA. Germ cell recovery, cryopreservation and transplantation in the California white sturgeon, Acipenser transmontanus. Sci Rep 2023; 13:16905. [PMID: 37803091 PMCID: PMC10558555 DOI: 10.1038/s41598-023-44079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
The white sturgeon (Acipenser transmontanus) is the largest freshwater fish in North America. Because of the unique life history characteristics of sturgeon, including longevity, late maturation and long spawning intervals, their aquaculture can be a significant investment of resources. As a result of habitat loss and overharvesting, natural populations of white sturgeon are threatened and there is a growing effort to improve conservation aquaculture programs. Germ cell transplantation is an innovative technology previously demonstrated in a variety of fish species to be able to produce a surrogate broodstock. The technique relies upon optimal donor germ cell recovery and transplantation into a recipient fish. In this study, we developed and optimized the harvest of donor cells for germline transplantation and evaluated methods for ovary cryopreservation for the first time in the white sturgeon. We found that harvesting gonads from juveniles between the ages of 1.5 and 2.5-years resulted in reliably high proportions of pre-meiotic cells regardless of sex, a critical feature for using white sturgeon for transplantation studies since the species shows no distinguishing external sex characteristics. From the viable cells, we identified germline cells using immunolabeling with the antibody DDX4, a marker specific to the germline. For in vivo tracking of donor cells during transplantations, gonadal cells were stained with a long half-life non-toxic cell membrane dye, PKH26, and microinjected into the peritoneal cavity of newly hatched white sturgeon larvae. Larvae were reared until 3 months post-transplantation to monitor for colonization and proliferation of PKH26-labeled cells within the recipient larval gonads. Furthermore, viable cell detection, assessment of germline-specificity, and transplantation was determined for cells recovered from cryopreserved ovarian tissue from sexually immature females. Transplantations using cells cryopreserved with media supplemented with dimethyl sulfoxide (DMSO) rather than ethylene glycol (EG) demonstrated the highest number of PKH26-labeled cells distributed along the gonadal ridges of the larval recipient. Determining optimal methods of tissue cryopreservation, and germ cell recovery and transplantation are foundational to the future development of germ cell transplantation as a strategy to improve the aquaculture and conservation of this species. Our study demonstrates that conservation actions, such as surrogate breeding, could be utilized by hatcheries to retain or improve natural gamete production without genetic modification, and provide an encouraging approach to the management of threatened sturgeon species.
Collapse
Affiliation(s)
- Amie L T Romney
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA.
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
| | - Danielle M Myers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Fatima R Martin
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tawny N Scanlan
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Stuart A Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Vitrification of the ovarian tissue in sturgeons. Theriogenology 2023; 196:18-24. [PMID: 36375212 DOI: 10.1016/j.theriogenology.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to test whether vitrification of sterlet Acipenser ruthenus and Russian sturgeon Acipenser gueldenstaedtii ovarian tissue through needle-immersed vitrification (NIV) is an efficient strategy for the preservation of oogonia (OOG) in order to supplement the current conservation efforts for these endangered fish species. Histological analyses of the gonads displayed that the ovaries of both species were immature and contained predominantly OOG and primary oocytes. The germline origin of these cells was verified by localization of the vasa protein through immunocytochemistry. NIV protocol was optimized by testing different equilibration (ES) and vitrification solutions (VS) containing various concentrations of dimethyl sulfoxide (Me2SO), propylene glycol (PG) or methanol (MeOH). In sterlet, the highest average viability (55.7 ± 11.5%) was obtained by using a combination of 1.5 M PG and 1.5 M Me2SO in the ES, and 1.5 M MeOH and 5.5 M Me2SO in the VS. In Russian sturgeon, the highest average viability (49.4 ± 17.1%) was obtained by using a combination of 1.5 M MeOH and 1.5 M Me2SO in the ES, and 3 M PG and 3 M Me2SO in the VS. To test whether vitrified/warmed OOG are functional, we have conducted an intra-specific transplantation assay to verify whether transplanted sterlet OOG will colonize the gonads of recipient fish. Fluorescently labelled cells were detected within recipient gonads at 2 and 3 months post-fertilization (mpf). Colonization rates of vitrified/warmed OOG (70% at 2 mpf and 61% at 3 mpf) were similar to those of fresh OOG (80% at 2 mpf and 70% at 3 mpf). This study has demonstrated that vitrification of ovarian tissue is an effective method for the preservation of OOG, and that the vitrified/warmed cells are functional and are able to colonize recipient gonads after transplantation similarly to the fresh cells. Since the vitrification procedure displayed in this study is simple and does not require complex and expensive laboratory equipment, it can be readily applied in field conditions, and therefore it can be invaluable for the conservation efforts of the critically endangered sturgeon species. However, care needs to be taken that despite the research conducted so far, donor-derived progeny was not yet obtained in sturgeons.
Collapse
|
10
|
Song H, Park HJ, Lee WY, Lee KH. Models and Molecular Markers of Spermatogonial Stem Cells in Vertebrates: To Find Models in Nonmammals. Stem Cells Int 2022; 2022:4755514. [PMID: 35685306 PMCID: PMC9174007 DOI: 10.1155/2022/4755514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the germline stem cells that are essential for the maintenance of spermatogenesis in the testis. However, it has not been sufficiently understood in amphibians, reptiles, and fish because numerous studies have been focused mainly on mammals. The aim of this review is to discuss scientific ways to elucidate SSC models of nonmammals in the context of the evolution of testicular organization since rodent SSC models. To further understand the SSC models in nonmammals, we point out common markers of an SSC pool (undifferentiated spermatogonia) in various types of testes where the kinetics of the SSC pool appears. This review includes the knowledge of (1) common molecular markers of vertebrate type A spermatogonia including putative SSC markers, (2) localization of the markers on the spermatogonia that have been reported in previous studies, (3) highlighting the most common markers in vertebrates, and (4) suggesting ways of finding SSC models in nonmammals.
Collapse
Affiliation(s)
- Hyuk Song
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science and Natural Resources, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Animal Science, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea
| | - Kyung Hoon Lee
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Ye H, Takeuchi Y, Du H, Yue H, Ruan R, Li C, Wei Q. Spermatogonia From Cryopreserved Testes of Critically Endangered Chinese Sturgeon Efficiently Colonized and Preferentially Proliferated in the Recipient Gonads of Yangtze Sturgeon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:136-150. [PMID: 35099661 DOI: 10.1007/s10126-022-10092-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The critically endangered Chinese sturgeon, Acipenser sinensis, presents late sexual maturity and has a large body size. Germ cell transplantation is a powerful technique for the production of gametes from large-bodied species in closely related recipients with a smaller body size and shorter generation time. To accelerate reproduction of Chinese sturgeon, donor spermatogonia collected from the cryopreserved testes of 3-year-old Chinese sturgeon were intraperitoneally transplanted into 7-8 days post-hatch larvae of Yangtze sturgeon (Acipenser dabryanus) with shorter generation interval. At 2 months post-transplantation (mpt), donor spermatogonia had colonized in the 81.25% of recipient gonads, with average numbers about two times those of endogenous primordial germ cells. Within the next 2 months, the rate of endogenous germ cell division in females (2-3 times) was faster than that in males (once), whereas colonized donor-derived spermatogonia divided about 2-3 times and twice in recipient females and males, respectively. Furthermore, the expression of germ cell-related genes, dazl, dead end, and vasa, in transplanted fish was higher than that in non-transplanted fish, suggesting the incorporation and proliferation donor spermatogonia in recipient. At 18 mpt, donor-derived spermatogonia survived in the 75.00% of recipient gonads. These results showed that the somatic microenvironment of Yangtze sturgeon gonad can support the long-term colonization, proliferation, and survival of xenogeneic germ cells. Thus, this study suggested that small-bodied Yangtze sturgeon is promising recipient as surrogate for Chinese sturgeon gamete production.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, 927-0552, Japan
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
12
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
13
|
Xie X, Tichopád T, Kislik G, Langerová L, Abaffy P, Šindelka R, Franěk R, Fučíková M, Steinbach C, Shah MA, Šauman I, Chen F, Pšenička M. Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet ( Acipenser ruthenus) Using Flow-Cytometric Cell Sorting. Front Cell Dev Biol 2021; 9:772625. [PMID: 34957105 PMCID: PMC8708567 DOI: 10.3389/fcell.2021.772625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Collapse
Affiliation(s)
- Xuan Xie
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Tomáš Tichopád
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Galina Kislik
- Imaging Methods Core Facility at BIOCEV, Operated by Faculty of Science, Charles University in Prague, Vestec, Czechia
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Michaela Fučíková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Mujahid Ali Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Ivo Šauman
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Fan Chen
- Department of Pharmacology, C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
14
|
de Siqueira-Silva DH, Dos Santos Silva AP, da Silva Costa R, Senhorini JA, Ninhaus-Silveira A, Veríssimo-Silveira R. Preliminary study on testicular germ cell isolation and transplantation in an endangered endemic species Brycon orbignyanus (Characiformes: Characidae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:767-776. [PMID: 30937624 DOI: 10.1007/s10695-019-00631-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We aimed to develop a simplified protocol for transplantation of Brycon orbignyanus spermatogonial stem cells (SSCs) into Astyanax altiparanae testes. Brycon orbignyanus testes were enzymatically digested and SSC purified by a discontinuous density gradient. Endogenous spermatogenesis was suppressed in A. altiparanae using busulfan or by incubation at 35 °C water, and SSCs from B. orbignyanus labeled with PKH26 were injected into their testes via the urogenital papilla. Twenty-two hours post-transplantation, labeled spermatogonia were observed in A. altiparanae tubular lumen. After 7 days, spermatogonia proliferated in the epithelium, and 21 days post-transplantation, sperm was observed in the lumen. Of surviving host fish, nearly 67% of those treated with busulfan and 85% of those held in warm water showed labeled cells in host germinal epithelium. The present study standardized, by a simple and accessible method, germ cell transplantation between sexually mature Characiformes fish species. This is the first report of xenogenic SSC transplantation in this fish order.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil.
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil.
- Campus de Ilha Solteira, Departamento de Biologia e Zootecnia, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP -Univ. Estadual Paulista, Rua Monção, 226, Zona Norte, Sao Paulo, Brazil.
| | - Amanda Pereira Dos Santos Silva
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - Raphael da Silva Costa
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - José Augusto Senhorini
- CEPTA-ICMBIO - National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Rodovia Pref. Euberto Nemesio Pereira de Godoy, Pirassununga, Sao Paulo, 13630-970, Brazil
| | - Alexandre Ninhaus-Silveira
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| | - Rosicleire Veríssimo-Silveira
- Campus de Ilha Solteira, Departament of Biology and Animal Science, L.I.NEO - Laboratório de Ictiologia Neotropical, UNESP - Univ. Estadual Paulista, Avenida Brasil Centro, 56, Ilha Solteira, Sao Paulo, 15385-000, Brazil
- Campus de São José do Rio Preto, Post-Graduation Program in Animal Biology, UNESP - Univ. Estadual Paulista, Rua Cristovão Colombo, Jardim Nazareth, 2265, São José do Rio Preto, Sao Paulo, 15504-000, Brazil
| |
Collapse
|
15
|
Dzyuba V, Cosson J, Papadaki M, Mylonas CC, Steinbach C, Rodina M, Tučkova V, Linhart O, Shelton WL, Gela D, Boryshpolets S, Dzyuba B. Influence of Environmental Temperature and Hormonal Stimulation on the In Vitro Sperm Maturation in Sterlet Acipenser ruthenus in Advance of the Spawning Season. Animals (Basel) 2021; 11:ani11051417. [PMID: 34063418 PMCID: PMC8155876 DOI: 10.3390/ani11051417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Sperm maturation (acquisition of the potential for motility and fertilization by morphologically developed spermatozoa) in sturgeons is atypical of ray-finned fishes: it occurs outside the testes during the transit of testicular spermatozoa through the kidneys into the Wolffian ducts. We recently developed a method in which testicular spermatozoa of sterlet Acipenser ruthenus are matured in vitro when incubated in seminal fluid derived from Wolffian duct sperm. In this study, we explored whether in vitro maturation of testicular spermatozoa depends on the environmental temperature and/or hormonal stimulation of spermiation. We studied spermatozoa motility parameters after in vitro maturation of testicular sperm, concentrations of sex steroid hormones and testis morphology in sterlet males at different stages of male preparation for spawning with and without hormonal induction of spermiation. The obtained data suggest that the ability of testicular spermatozoa to be matured was not related to the environmental temperature, while hormonal stimulation was an absolute requirement for optimal in vitro maturation. The use of in vitro matured testicular spermatozoa might have considerable potential in aquaculture or conservation programs, which can be realized in cases of accidental death of valuable broodstock or failure to obtain Wolffian duct sperm of high quality. Abstract Sturgeon sperm maturation occurs outside the testes during the transit of testicular spermatozoa (TS) through the kidneys and the Wolffian ducts. A method of in vitro TS maturation in sterlet Acipenser ruthenus was used to investigate the effects of temperature and hormonal stimulation of spermiation on the ability of TS to complete this process. Spermatozoa motility parameters after in vitro maturation of testicular sperm, concentrations of sex steroid hormones and testis morphology were studied in three groups of sterlet: (1) after overwintering in ponds (OW), (2) adapted to spawning temperature (ST), and (3) adapted to spawning temperature with hormonal induction of spermiation (ST-HI). Blood plasma concentrations of testosterone, 11-ketotestosterone and 17,20β-dihydroxy-pregnenolone increased significantly after hormonal induction of spermiation (group ST-HI). In all groups, TS were not motile. After in vitro sperm maturation, motility was up to 60% only in group ST-HI. The data suggest that the ability of TS to be matured in vitro was not related to the environmental temperature, while hormonal stimulation of spermiation during the spawning season was an absolute requirement for optimal in vitro maturation.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
- Correspondence:
| | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Maria Papadaki
- Hellenic Centre for Marine Research, Biotechnology and Aquaculture (IMBBC), Institute of Marine Biology, Heraklion, 71500 Crete, Greece; (M.P.); (C.C.M.)
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research, Biotechnology and Aquaculture (IMBBC), Institute of Marine Biology, Heraklion, 71500 Crete, Greece; (M.P.); (C.C.M.)
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Vladimira Tučkova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - William L. Shelton
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - David Gela
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Sergii Boryshpolets
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| | - Borys Dzyuba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (J.C.); (C.S.); (M.R.); (V.T.); (O.L.); (W.L.S.); (D.G.); (S.B.); (B.D.)
| |
Collapse
|
16
|
Multi-Parametric Portfolio to Assess the Fitness and Gonadal Maturation in Four Key Reproductive Phases of Brown Trout. Animals (Basel) 2021; 11:ani11051290. [PMID: 33946305 PMCID: PMC8146139 DOI: 10.3390/ani11051290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Brown trout is a freshwater fish with economic importance and with a great potential to be used as an environmental biosensor species. Despite being selected as a model species in distinct scientific contexts, in cultured specimens, there is a surprising lack of works investigating the morpho-physiological changes associated with the reproductive cycle; particularly concerning the gonads. In this study, a multi-parameter portfolio of biometric, biochemical, hormonal, and morphological analysis was established, which allowed a seasonal and sex characterization of the gonad status of adult brown trout males and females. Sampling included four reproductive phases: spawning capable (December), regressing (March), regenerating (July), and developing (November). Sex- and season-specific changes were described. The discriminative parameters characterized here stand now as normal baseline values against which abnormal patterns can be compared with. These parameters have the potential to be used as tools for the environmental monitoring of the reproductive status of wild populations and for the control of breeding stocks in aquaculture. Abstract Brown trout is an environmental freshwater sentinel species and is economically important for recreational fishing and aquaculture. Despite that, there is limited knowledge regarding morpho-physiological variations in adults throughout the reproductive cycle. Thus, this study aimed to analyze the fitness and gonadal maturation of cultured adult brown trout in four reproductive phases (spawning capable—December, regressing—March, regenerating—July, and developing—November). The systematic evaluation of males and females was based on biometric, biochemical, and hormonal parameters, along with a histomorphological grading of gonads and the immunophenotype location of key steroidogenic enzymes. The total weight and lengths reached the lowest levels in December. Gonad weights were higher in December and November, while the opposite pattern was found for liver weights. The lowest levels of cholesterol and total protein were also noted during those stages. The 11-ketotestosterone (11-KT) and testosterone (T) for males, and estradiol (E2) and T for females, mostly explained the hormonal variations. The immunohistochemistry of cytochrome P450c17 (CYP17-I), aromatase (CYP19), and 17β-hydroxysteroid dehydrogenase (17β-HSD) showed sex and site-specific patterns in the distinct reproductive phases. The sex- and season-specific changes generated discriminative multi-parameter profiles, serving as a tool for environmental and aquaculture surveys.
Collapse
|
17
|
Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol Adv 2021; 49:107756. [PMID: 33895331 PMCID: PMC8192414 DOI: 10.1016/j.biotechadv.2021.107756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Aquaculture is playing an increasingly important role in meeting global demands for seafood, particularly in low and middle income countries. Genetic improvement of aquaculture species has major untapped potential to help achieve this, with selective breeding and genome editing offering exciting avenues to expedite this process. However, limitations to these breeding and editing approaches include long generation intervals of many fish species, alongside both technical and regulatory barriers to the application of genome editing in commercial production. Surrogate broodstock technology facilitates the production of donor-derived gametes in surrogate parents, and comprises transplantation of germ cells of donors into sterilised recipients. There are many successful examples of intra- and inter-species germ cell transfer and production of viable offspring in finfish, and this leads to new opportunities to address the aforementioned limitations. Firstly, surrogate broodstock technology raises the opportunity to improve genome editing via the use of cultured germ cells, to reduce mosaicism and potentially enable in vivo CRISPR screens in the progeny of surrogate parents. Secondly, the technology has pertinent applications in preservation of aquatic genetic resources, and in facilitating breeding of high-value species which are otherwise difficult to rear in captivity. Thirdly, it holds potential to drastically reduce the effective generation interval in aquaculture breeding programmes, expediting the rate of genetic gain. Finally, it provides new opportunities for dissemination of tailored, potentially genome edited, production animals of high genetic merit for farming. This review focuses on the state-of-the-art of surrogate broodstock technology, and discusses the next steps for its applications in research and production. The integration and synergy of genomics, genome editing, and reproductive technologies have exceptional potential to expedite genetic gain in aquaculture species in the coming decades. Genetic improvement in aquaculture species has a major role in global food security. Advances in biotechnology provide new opportunities to support aquaculture breeding. Advances in biotechnology provide new opportunities to support aquaculture breeding. Donor-derived gametes can be produced from surrogate broodstock of several aquaculture species. Surrogate broodstock technology provides new opportunities for application of genome editing. Surrogate broodstock can accelerate genetic gain, and improve dissemination of elite germplasm.
Collapse
Affiliation(s)
- Ye Hwa Jin
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK.
| |
Collapse
|
18
|
Rivers N, Daly J, Temple-Smith P. New directions in assisted breeding techniques for fish conservation. Reprod Fertil Dev 2021; 32:807-821. [PMID: 32527372 DOI: 10.1071/rd19457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Fish populations continue to decline globally, signalling the need for new initiatives to conserve endangered species. Over the past two decades, with advances in our understanding of fish germ line biology, new exsitu management strategies for fish genetics and reproduction have focused on the use of germ line cells. The development of germ cell transplantation techniques for the purposes of propagating fish species, most commonly farmed species such as salmonids, has been gaining interest among conservation scientists as a means of regenerating endangered species. Previously, exsitu conservation methods in fish have been restricted to the cryopreservation of gametes or maintaining captive breeding colonies, both of which face significant challenges that have restricted their widespread implementation. However, advances in germ cell transplantation techniques have made its application in endangered species tangible. Using this approach, it is possible to preserve the genetics of fish species at any stage in their reproductive cycle regardless of sexual maturity or the limitations of brief annual spawning periods. Combining cryopreservation and germ cell transplantation will greatly expand our ability to preserve functional genetic samples from threatened species, to secure fish biodiversity and to produce new individuals to enhance or restore native populations.
Collapse
Affiliation(s)
- Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia; and Corresponding author.
| | - Jonathan Daly
- Smithsonian Conservation Biology Institute, Front Royal, VA 22360, USA; and Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia
| |
Collapse
|
19
|
Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating. Biomolecules 2020; 10:biom10111477. [PMID: 33114294 PMCID: PMC7690863 DOI: 10.3390/biom10111477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Fish ovarian germline stem cells (OGSCs) have great potential in various biological fields due to their ability to generate large numbers of mature eggs. Therefore, selective enrichment of OGSCs is a prerequisite for successful applications. To determine the optimal conditions for the enrichment of OGSCs from Japanese medaka (Oryzias latipes), we evaluated the effects of Percoll density gradient centrifugation (PDGC), differential plating (DP), and a combination of both methods. Based on cell morphology and gene expression of germ cell-specific Vasa and OGSC-specific Nanos2, we demonstrated that of seven density fractions obtained following PDGC, the 30-35% density fraction contained the highest proportion of OGSCs, and that Matrigel was the most effective biomolecule for the enrichment of Oryzias latipes OGSCs by DP in comparison to laminin, fibronectin, gelatin, and poly-l-lysine. Furthermore, we confirmed that PDGC and DP in combination significantly enhanced the efficiency of OGSC enrichment. The enriched cells were able to localize in the gonadal region at a higher efficiency compared to non-enriched ovarian cells when transplanted into the developing larvae. Our approach provides an efficient way to enrich OGSCs without using OGSC-specific surface markers or transgenic strains expressing OGSC-specific reporter proteins.
Collapse
|
20
|
Ye H, Takeuchi Y, Wu M, Yue H, Ruan R, Du H, Zhou C, Xiang H, Li C, Wei Q. Assessment of Yangtze sturgeon as recipient for the production of American paddlefish gametes through spermatogonia transplantation. Theriogenology 2020; 158:168-179. [PMID: 32961352 DOI: 10.1016/j.theriogenology.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 11/28/2022]
Abstract
The Chinese paddlefish (Psephurus gladius), one of the world's largest freshwater fish, was last seen alive in 2003; they are presumed now to be extinct. In fish, germ cell transplantation is currently known as one of the most powerful assisted reproductive technologies for the conservation of endangered species. In the event that a Chinese paddlefish is unexpectedly caught in the near future, we aimed to develop an experimental strategy to produce paddlefish gametes in the gonads of surrogate sturgeon. Spermatogonia were collected from the testes of 2.5-year-old immature male American paddlefish (Polyodon spathula), the species most closely related to the Chinese paddlefish, by Percoll gradient centrifugation, and transplanted into the peritoneal cavity of Yangtze sturgeon (Acipenser dabryanus) larvae at 7-8 days post-hatch. At two months post-transplantation, donor-derived spermatogonia had efficiently colonized in the recipient gonads and proliferated. A PCR analysis developed to detect xenogenic donor-derived mtDNA sequences in recipient gonads revealed that American paddlefish germ cells survived for at least seven months after transplantation in the gonads of Yangtze sturgeon recipients. These results show that the somatic microenvironment of Yangtze sturgeon gonads was able to support the colonization, proliferation, and survival of xenogeneic germ cells from a different taxonomic family. This study provides key information that could lead to future restoration of Chinese paddlefish using germ cell transplantation.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, 927-0552, Japan
| | - Mengbin Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Congli Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hao Xiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
21
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
22
|
Poursaeid S, Kalbassi MR, Hassani SN, Baharvand H. Isolation, characterization, in vitro expansion and transplantation of Caspian trout (Salmo caspius) type a spermatogonia. Gen Comp Endocrinol 2020; 289:113341. [PMID: 31954748 DOI: 10.1016/j.ygcen.2019.113341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 01/15/2023]
Abstract
Sprmatogonial stem cells (SSCs) are valuable for preservation of endangered fish species, biological experimentation, as well as biotechnological applications. However, the rarity of SSCs in the testes has been a great obstacle in their application. Thus, establishment of an efficient in-vitro culture system to support continuous proliferation of SSCs is essential. The present study aimed to establish an efficient and simple method for in vitro culture of Caspian trout undifferentiated spermatogonial cells. Using a two-step enzymatic digestion, testicular cells were isolated from immature testes composed of mainly undifferentiated spermatogonial cells with gonadosomatic indices of <0.05%. The spermatogonial cells were purified by differential plating through serial passaging. The purified cells indicated high expression of type A spermatogonia-related genes (Ly75, Gfrα1, Nanos2, Plzf and Vasa). Proliferation of purified cells was confirmed by BrdU incorporation. Co-culture of purified cells with testicular somatic cells as a feeder layer, resulted in continuous proliferation of type A spermatogonia. The cultured cells continued to express type A spermatogonia-specific markers after one month culture. The cultured spermatogonia were successfully incorporated into the germline after being intraperitoneally transplanted into sterile triploid rainbow trout hatchlings. These results, for the first time, demonstrated that the somatic microenvironment of the rainbow trout gonad can support the colonization and survival of intraperitoneally transplanted cells derived from a fish species belonging to a different genus. Therefore, the combination of in vitro culture system and xenotransplantation can be considered as a promising strategy for conservation of Caspian trout genetic resources.
Collapse
Affiliation(s)
- Samaneh Poursaeid
- Fisheries Department, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Mohammad-Reza Kalbassi
- Fisheries Department, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
23
|
Saito T, Güralp H, Iegorova V, Rodina M, Pšenicka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod 2019; 99:556-564. [PMID: 29635315 PMCID: PMC6134207 DOI: 10.1093/biolre/ioy076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/06/2018] [Indexed: 11/14/2022] Open
Abstract
A technique for rescuing and propagating endangered species involves implanting germ line stem cells into surrogates of a host species whose primordial germ cells (PGCs) have been destroyed. We induced sterilization in sterlet (Acipenser ruthenus) embryos by means of ultraviolet (UV) irradiation at the vegetal pole, the source of early-stage PGCs of sturgeon eggs. The optimal cell stage and length of UV irradiation for the effective repression of the developing PGCs were determined by exposing embryos at the one- to four-cell stage to different doses of irradiation at a wavelength of 254 nm (the optimal absorbance spectrum for germplasm destruction). The vegetal pole region of the embryos was labeled immediately upon irradiation with GFP bucky ball mRNA to monitor the amount of germ plasm and FITC-dextran (M.W. 500,000) to obtain the number of PGCs in the embryos. The size of the germ plasm and number of surrounding mitochondria in the irradiated embryos and controls were observed using transmission electron microscopy, which revealed a drastic reduction in both on the surface of the vegetal pole in the treated embryos. Furthermore, the reduction in the number of PGCs was proportional to the dose of UV irradiation. Under the conditions tested, optimum irradiation for PGCs removal was seen at 360 mJ/cm2 at the one-cell stage. Although some PGCs were observed after the UV irradiation, they significantly reduced in number as the embryos grew. We conclude that UV irradiation is a useful and efficient technique to induce sterility in surrogate sturgeons.
Collapse
Affiliation(s)
- Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Hilal Güralp
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Viktoriia Iegorova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Pšenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
24
|
A state-of-the-art review of surrogate propagation in fish. Theriogenology 2019; 133:216-227. [DOI: 10.1016/j.theriogenology.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
25
|
Sun A, Zhu H, Dong Y, Wang W, Hu HX. Establishment of a novel testicular cell line from sterlet Acipenser ruthenus and evaluation of its applications. JOURNAL OF FISH BIOLOGY 2019; 94:804-809. [PMID: 30484862 DOI: 10.1111/jfb.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
In this study, a cell line, designated as Acipenser ruthenus testis (ART), was successfully established from testis tissues of the sterlet Acipenser ruthenus and characterized by studying and comparing the expression of specific genes between the cell line and the parent gonad tissues. The results suggested that the developed ART cell line was composed of a mixture of germ cells and somatic cells. Ploidy analysis indicated that the cell line exhibited a high degree of genetic stability and that the cells remained in a good proliferating state after being subcultured to passage 80.
Collapse
Affiliation(s)
- Ai Sun
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hua Zhu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Ying Dong
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Wei Wang
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hong Xia Hu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| |
Collapse
|
26
|
Franěk R, Marinović Z, Lujić J, Urbányi B, Fučíková M, Kašpar V, Pšenička M, Horváth Á. Cryopreservation and transplantation of common carp spermatogonia. PLoS One 2019; 14:e0205481. [PMID: 30998742 PMCID: PMC6472724 DOI: 10.1371/journal.pone.0205481] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/07/2019] [Indexed: 11/18/2022] Open
Abstract
Common carp (Cyprinus carpio) is one of the most cultured fish species over the world with many different breeds and plenty of published protocols for sperm cryopreservation. However, data regarding preservation of gonadal tissue and surrogate production is still missing. A protocol for freezing common carp spermatogonia was developed through varying different factors along a set of serial subsequent experiments. Among the six cryoprotectants tested, the best survival was achieved with dimethyl sulfoxide (Me2SO). In the next experiment, a wide range of cooling rates (0.5–10°C/min) and different concentrations of Me2SO were tested resulting in the highest survival achieved using 2 M Me2SO and cooling rate of -1°C/min. When testing different tissue sizes and incubation times in the cryomedia, the highest viability was observed when incubating 100 mg tissue fragments for 30 min. Finally, sugar supplementation did not yield significant differences. When testing different equilibration (ES) and vitrification solutions (VS) used for needle-immersed vitrification, no significant differences were observed between the tested groups. Additionally, varied exposure time to VS did not improve the vitrification outcome where the viability was 4-fold lower than that of freezing. The functionality of cryopreserved cells was tested by interspecific transplantation into sterilized goldfish recipients. The exogenous origin of the germ cells in gonads of goldfish recipient was confirmed by molecular markers and incorporation rate was over 40% at 3 months post-transplantation. Results of this study can serve for long-term preservation of germplasm in carp which can be recovered in a surrogate recipient.
Collapse
Affiliation(s)
- Roman Franěk
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Czech Republic
- * E-mail:
| | - Zoran Marinović
- Department of Aquaculture, Szent István University, Gödöllö, Hungary
| | - Jelena Lujić
- Department of Aquaculture, Szent István University, Gödöllö, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Gödöllö, Hungary
| | - Michaela Fučíková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Czech Republic
| | - Vojtěch Kašpar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Czech Republic
| | - Martin Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Czech Republic
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Gödöllö, Hungary
| |
Collapse
|
27
|
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals (Basel) 2019; 9:ani9040174. [PMID: 30999629 PMCID: PMC6523263 DOI: 10.3390/ani9040174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Sturgeons, also called archaic giants, are critically endangered fish species due to overfishing for caviar and interference in their natural habitats. Some sturgeon species have life spans of over 100 years and sexual maturity is attained between 20 to 25 years. Sterlet (Acipenser ruthenus) has fastest reproductive cycle; thus, this species can be used for surrogate production in sturgeons. Primordial germ cells are the origin of all germ cells in developing embryos. Dnd1 is essential for formation and migration of primordial germ cells and its inactivation results in sterility in fish. In our study, we have used a cutting-edge genome editing technology known as CRISPR/Cas9 to knockout dnd1 and to prepare a sterile sterlet host. CRISPR/Cas9 knocked-out embryos lacked primordial germ cells and can be used as a sterile host for surrogate production in sturgeons. Abstract Sturgeons also known as living fossils are facing threats to their survival due to overfishing and interference in natural habitats. Sterlet (Acipenser ruthenus) due to its rapid reproductive cycle and small body size can be used as a sterile host for surrogate production for late maturing and large sturgeon species. Dead end protein (dnd1) is essential for migration of Primordial Germ Cells (PGCs), the origin of all germ cells in developing embryos. Knockout or knockdown of dnd1 can be done in order to mismigrate PGCs. Previously we have used MO and UV for the aforementioned purpose, and in our present study we have used CRISPR/Cas9 technology to knockout dnd1. No or a smaller number of PGCs were detected in crispants, and we also observed malformations in some CRISPR/Cas9 injected embryos. Furthermore, we compared three established methods to achieve sterility in sterlet, and we found higher embryo survival and hatching rates in CRISPR/Cas9, UV and MO, respectively.
Collapse
|
28
|
Franěk R, Tichopád T, Steinbach C, Xie X, Lujić J, Marinović Z, Horváth Á, Kašpar V, Pšenička M. Preservation of female genetic resources of common carp through oogonial stem cell manipulation. Cryobiology 2019; 87:78-85. [DOI: 10.1016/j.cryobiol.2019.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/27/2022]
|
29
|
Xie X, Li P, Pšenička M, Ye H, Steinbach C, Li C, Wei Q. Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production. Animals (Basel) 2019; 9:ani9030106. [PMID: 30901855 PMCID: PMC6466142 DOI: 10.3390/ani9030106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023] Open
Abstract
Simple Summary The sturgeon is among the most ancient of actinopterygian fishes. Most species of sturgeon are listed as critically endangered due to habitat alteration caused by damming of rivers, pollution and overharvesting. Germ cell transplant is a useful tool to save these endangered species. To expand germ cell populations and sustain the supply for long periods for transplant, we established basal culture conditions for sturgeon germ cells. Germ cell mitotic activity has been enhanced by eliminating gonad somatic cells, supplementing with growth factor and using an alternative to fetal bovine serum. The optimal condition identified was purified germ cells cultured in serum-free medium supplemented with leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF) at 21 °C. Cultured sterlet germ cells showed development after transplant into Russian sturgeon. The study provided useful information for sturgeon germ cell culture. Abstract To expand germ cell populations and provide a consistent supply for transplantation, we established basal culture conditions for sturgeon germ cells and subsequently increased their mitotic activity by eliminating gonad somatic cells, supplementing with growth factor, and replacing fetal bovine serum (FBS). The initial basal culture conditions were Leibovitz’s L-15 medium (pH 8.0) supplemented with 5% FBS (p < 0.001) at 21 °C. Proliferation of germ cells was significantly enhanced and maintained for longer periods by elimination of gonad somatic cells and culture under feeder-cell free conditions, with addition of leukemia inhibitory factor and glial-cell-derived neurotrophic factor (p < 0.001). A serum-free culture medium improved germ cell proliferation compared to the L-15 with FBS (p < 0.05). Morphology remained similar to that of fresh germ cells for at least 40 d culture. Germline-specific gene expression analysis revealed no significant changes to germ cells before and after culture. Sterlet Acipenser ruthenus germ cells cultured more than 40 days showed development after transplant into Russian sturgeon Acipenser gueldenstaedtii. Polymerase chain reaction showed 33.3% of recipient gonads to contain sterlet cells after four months. This study developed optimal culture condition for sturgeon germ cells. Germ cells after 40 d culture developed in recipient gonads. This study provided useful information for culture of sturgeon germ cells.
Collapse
Affiliation(s)
- Xuan Xie
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Ping Li
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
- Marine College, Shandong Universit, Weihai 264209, China.
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Christoph Steinbach
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
30
|
Mayer I. The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:187-224. [PMID: 31471798 DOI: 10.1007/978-3-030-23633-5_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The teleost fishes are the largest and most diverse vertebrate group, accounting for nearly half of all known vertebrate species. Teleost fish exhibit greater species diversity than any other group of vertebrates and this is reflected in the unique variety of different reproductive strategies displayed by fish. Fish have always been an important resource for humans worldwide, especially as food. While wild capture fisheries have historically been the main source of fish, the farming of fish (aquaculture) is increasingly becoming the more dominant source of food fish, and is predicted to account for 60% of total global fish production by 2030.Fishes are increasingly threatened by a wide range of anthropogenic impacts, including loss of habitat, pollution, invasive species and over-exploitation. In addition, climate change, especially the consequences of global warming, can impact fish at all levels of biological organization from the individual to the population level, influencing both physiological and ecological processes in a variety of direct and indirect ways. As such, there is an urgent need to protect and conserve the huge genetic diversity offered by this diverse vertebrate group, not just as a source of genes for contemporary breeding and for protection against the consequences of climate change and disease, but also as part of our national heritage. While the cryopreservation of reproductive cells is a means of achieving these objectives, currently only fish sperm can be successfully frozen. Due to their large size, large yolk compartment, low membrane permeability and high chilling sensitivity, successful and reproducible protocols for the cryopreservation of fish oocytes and embryos still remains elusive. However, significant advances have been made in the cryopreservation of primordial germ cells as an alternative means of conserving both paternal and maternal genomes. Although more research needs to be carried out on how these cells can be optimally applied to emerging reproductive technologies, including transplantation techniques and surrogate broodstock technologies, the successful cryopreservation of fish germ cells, and the establishment of genetic resource banks, offers the possibility of both conserving and restoring threatened species. Further, current and future conservation efforts need to consider the impact of climate change in both in situ conservation and reintroduction efforts.In conclusion, it is anticipated that the successful cryopreservation of fish germplasm will result in a range of economic, ecological and societal benefits. In partnership with emerging assisted reproductive technologies, the successful cryopreservation of fish germplasm will lead to more efficient reproduction in aquaculture, assist selective breeding programmes, and be of crucial importance to future species conservation actions.
Collapse
Affiliation(s)
- Ian Mayer
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway.
| |
Collapse
|
31
|
Anesthetic protocol for microinjection-related handling of Siberian sturgeon (Acipenser baerii; Acipenseriformes) prolarvae. PLoS One 2018; 13:e0209928. [PMID: 30596742 PMCID: PMC6312391 DOI: 10.1371/journal.pone.0209928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
An anesthetic protocol was optimized for microinjection-related handling of Siberian sturgeon (Acipenser baerii; Acipenseriformes) prolarvae, an extant primitive fish species commonly grown in aquaculture. Comparative examinations of three selected anesthetics (clove oil, lidocaine, and MS-222) with a dosage regime of 50, 100, 200, and 400 mg/L indicated that MS-222 was the most efficient agent for Siberian sturgeon prolarvae, as evidenced by the fast induction of anesthesia with quick and uniform recovery. Meanwhile, clove oil should be avoided, due to prolonged recovery times varying widely between individuals. None of the tested anesthetics significantly affected prolarval viability at any of the dosage regimes tested in this study. Based on an analysis of the duration of an unconscious state in air, we recommend a dose of 200 mg/L MS-222 for microinjection. Recovery time after use of this dose was influenced by the prolarval age and the development of gills, in which prolarvae older than 3 days after hatching required longer recovery times than did younger prolarvae. Post-recovery behavioral assessment showed no apparent difference between MS-222-anesthetized and non-anesthetized prolarvae in their swimming behavior and phototactic responses. Applicability of currently developed anesthetic protocol using MS-222 in larval microinjection was demonstrated with the injection of a visible dye to the anesthetized prolarvae, followed by the analysis of post-recovery viability. Taken together, the present anesthetic protocol based on 200 mg/L of MS-222 could provide researchers with practical usefulness with good safety margins for the micromanipulation and other related handlings of Siberian sturgeon prolarvae.
Collapse
|
32
|
de Siqueira-Silva DH, Saito T, Dos Santos-Silva AP, da Silva Costa R, Psenicka M, Yasui GS. Biotechnology applied to fish reproduction: tools for conservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1469-1485. [PMID: 29707740 DOI: 10.1007/s10695-018-0506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- UNIFESSPA - Federal University of South and Southeast of Para - Institute for Health and Biological Studies - IESB, Faculty of Biology - FACBIO, Laboratory of Neuroscience and Behavior, Marabá, Para, Brazil.
| | - Taiju Saito
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Japan
| | | | - Raphael da Silva Costa
- PPG in Animal Biology, UNESP - Paulista State University, São José do Rio Preto, São Paulo, Brazil
| | - Martin Psenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|
33
|
Lujić J, Marinović Z, Bajec SS, Djurdjevič I, Urbányi B, Horváth Á. Interspecific germ cell transplantation: a new light in the conservation of valuable Balkan trout genetic resources? FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1487-1498. [PMID: 29756177 DOI: 10.1007/s10695-018-0510-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Interspecific transplantation of germ cells from the brown trout Salmo trutta m. fario and the European grayling Thymallus thymallus into rainbow trout Oncorhynchus mykiss recipients was carried out in order to improve current practices in conservation of genetic resources of endangered salmonid species in the Balkan Peninsula. Current conservation methods mainly include in situ efforts such as the maintenance of purebred individuals in isolated streams and restocking with purebred fingerlings; however, additional ex situ strategies such as surrogate production are needed. Steps required for transplantation such as isolation of high number of viable germ cells and fluorescent labeling of germ cells which are to be transplanted have been optimized. Isolated and labeled brown trout and grayling germ cells were intraperitoneally transplanted into 3 to 5 days post hatch rainbow trout larvae. Survival of the injected larvae was comparable to the controls. Sixty days after transplantation, fluorescently labeled donor cells were detected within the recipient gonads indicating successful incorporation of germ cells (brown trout spermatogonia and oogonia-27%; grayling spermatogonia-28%; grayling oogonia-23%). PCR amplification of donor mtDNA CR fragments within the recipient gonads additionally corroborated the success of incorporation. Overall, the transplantation method demonstrated in this study presents the first step and a possible onset of the application of the germ cell transplantation technology in conservation and revitalization of genetic resources of endangered and endemic species or populations of salmonid fish and thus give rise to new or improved management strategies for such species.
Collapse
Affiliation(s)
- Jelena Lujić
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Zoran Marinović
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary.
| | - Simona Sušnik Bajec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Ida Djurdjevič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domžale, Slovenia
| | - Béla Urbányi
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, Páter Károly u. 1, Gödöllő, 2100, Hungary
| |
Collapse
|
34
|
Hybrid Sterility in Fish Caused by Mitotic Arrest of Primordial Germ Cells. Genetics 2018; 209:507-521. [PMID: 29610216 DOI: 10.1534/genetics.118.300777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Sterility in hybrid animals is widely known to be due to a cytological mechanism of aberrant homologous chromosome pairing during meiosis in hybrid germ cells. In this study, the gametes of four marine fish species belonging to the Sciaenid family were artificially fertilized, and germ cell development was examined at the cellular and molecular levels. One of the intergeneric hybrids had gonads that were testis-like in structure, small in size, and lacked germ cells. Specification of primordial germ cells (PGCs) and their migration toward genital ridges occurred normally in hybrid embryos, but these PGCs did not proliferate in the hybrid gonads. By germ cell transplantation assay, we showed that the gonadal microenvironment in hybrid recipients produced functional donor-derived gametes, suggesting that the germ cell-less phenotype was caused by cell autonomous proliferative defects of hybrid PGCs. This is the first evidence of mitotic arrest of germ cells causing hybrid sterility in animals.
Collapse
|
35
|
Fopp-Bayat D, Hliwa P, Ocalewicz K. Presence of gynogenetic males suggests a female heterogamety in sterlet Acipenser ruthenus L. Anim Reprod Sci 2017; 189:110-118. [PMID: 29290457 DOI: 10.1016/j.anireprosci.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
Abstract
Investigation of the heterogametic sex in sterlet Acipenser ruthenus L. was performed using meiotic gynogenesis and gonadal histology. Eggs from the albino females were activated by UV irradiated sperm of wild colored males and exposed to a heat shock. The resultant fish were all albino and exhibited exclusively maternal inheritance of the microsatellite DNA markers. Cytogenetic analysis indicated that gynogenetic progeny were diploids with 120 chromosomes. Based on the histological analysis, more than 86% of the gynogenetic individuals were found to be females. Moreover, some males (7%), sterile speciemens (3.5%) and fish with unidentified gonads (3.5%) were observed among the gynogenetic fish. Presence of both females and males in the gynogenetic offspring is indicative that the heterogametic sex in sterlets is female.
Collapse
Affiliation(s)
- Dorota Fopp-Bayat
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Piotr Hliwa
- Department of Ichthyology, University of Warmia and Mazury in Olsztyn, Poland
| | - Konrad Ocalewicz
- Faculty of Oceanography and Geography, Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdansk, Poland
| |
Collapse
|
36
|
Güralp H, Pocherniaieva K, Blecha M, Policar T, Pšenička M, Saito T. Development, and effect of water temperature on development rate, of pikeperch Sander lucioperca embryos. Theriogenology 2017; 104:94-104. [PMID: 28822905 DOI: 10.1016/j.theriogenology.2017.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/18/2022]
Abstract
Knowledge of embryo development is essential to the application of reproductive biotechnology in aquaculture, including for pikeperch Sander lucioperca. We describe pikeperch embryo development and demonstrated effects of temperature on the duration of embryogenesis. Developmental stages in embryos incubated at 15 °C were identified as zygote, 0-1.5 h post-fertilization (hpf); cleavage, 2.5-7.5 hpf; blastula, 9-18.75 hpf; gastrula, 21-39, hpf; segmentation, 45-105 hpf; and hatching, 125-197 hpf. Additional groups of eggs were fertilized and incubated at 10, 15, 20, and 25 °C to document stages of development, development rate, and survival. The optimal fertilization and incubation temperature was shown to be 15 °C, with the highest fertilization, survival, and hatching rates. Embryo development was slower at 10 °C, with 45% of fertilized embryos surviving to hatching. Development was accelerated at 20 °C, and resulted in a 56% survival rate of fertilized embryos. At 25 °C, embryos did not develop to the blastula stage. Pikeperch could be a valuable percid model for research in which flexible incubation temperatures is required.
Collapse
Affiliation(s)
- H Güralp
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - K Pocherniaieva
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Blecha
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - T Policar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Pšenička
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - T Saito
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
37
|
Falahatkar B, Poursaeid S, Kitada R, Yoshizaki G. Hypothermic storage of isolated spermatogonia and oogonia from rainbow trout ( Oncorhynchus mykiss ). Cryobiology 2017; 76:125-128. [DOI: 10.1016/j.cryobiol.2017.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/11/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
|
38
|
Ye H, Li CJ, Yue HM, Du H, Yang XG, Yoshino T, Hayashida T, Takeuchi Y, Wei QW. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis. Theriogenology 2017; 94:37-47. [PMID: 28407859 DOI: 10.1016/j.theriogenology.2017.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 01/28/2023]
Abstract
Recent progress in germ cell transplantation techniques in fish has paved the way for the conservation of endangered species. Here, we developed an intraperitoneal germ cell transplantation procedure using Chinese and Dabry's sturgeon as donor and recipient species, respectively. Histological analysis revealed that primordial germ cells migrated on the peritoneal wall at 16 days post-hatch (dph) in Dabry's sturgeon. The genital ridges of Dabry's sturgeon (recipient) first formed at 28 dph, suggesting that for successful colonization of donor germ cells in the recipient gonads, the transplantation should be performed earlier than this age. Sexual dimorphism of gonadal structure was first observed at 78 dph. Gonadal germ cell proliferation was not seen in either sex during this period. Immunohistochemistry using the anti-Vasa antibody found that donor testes from 2-year-old Dabry's sturgeon mainly consisted of single- or paired-type A spermatogonia, while donor ovaries from 11.5-year-old Chinese sturgeon had perinucleolus stage oocytes and clusters of oogonia. Donor cells isolated from Dabry's sturgeon testes or Chinese sturgeon ovary labeled with PKH26 fluorescent dye were transplanted into the peritoneal cavity of the 7- or 8-dph Dabry's sturgeon larvae. More than 90% and 70% of transplanted larvae survived after 2 days post-transplantation (dpt) and 51 dpt, respectively. At 51 dpt, PKH26-labeled cells exhibiting germ cell-specific nuclear morphology and diameter were observed in excised recipient gonads by fluorescent and confocal microscopy. The colonization rate of allogeneic testicular germ cell transplantation (Group 1) was 70%, while that of two batches of xenogeneic ovarian germ cell transplantation (Group 2 and Group 3) were 6.7% and 40%, respectively. The ratio of colonized germ cells to endogenous germ cells was 11.96%, 5.35% and 3.56% for Group 1, Group 2 and Group 3, respectively. Thus, we established a germ cell transplantation technique for the critically endangered Chinese sturgeon using the most closely related species as a recipient and demonstrated the successful preparation of transplantable female germ cells from aged adult Chinese sturgeon.
Collapse
Affiliation(s)
- Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China; Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Chuang-Ju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Hua-Mei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China
| | - Xiao-Ge Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China
| | - Tasuku Yoshino
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Takao Hayashida
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan
| | - Yutaka Takeuchi
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan.
| | - Qi-Wei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Fisheries Research Center, Chinese Academy of Fisheries Science, Wuxi, 214081, China.
| |
Collapse
|
39
|
Production of fertile sperm from in vitro propagating enriched spermatogonial stem cells of farmed catfish, Clarias batrachus. ZYGOTE 2016; 24:814-824. [DOI: 10.1017/s0967199416000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SummarySpermatogenesis is a highly co-ordinated and complex process. In vitro propagation of spermatogonial stem cells (SSCs) could provide an avenue in which to undertake in vivo studies of spermatogenesis. Very little information is known about the SSC biology of teleosts. In this study, collagenase-treated testicular cells of farmed catfish (Clarias batrachus, popularly known as magur) were purified by Ficoll gradient centrifugation followed by magnetic activated cell sorting using Thy1.2 (CD90.2) antibody to enrich for the spermatogonial cell population. The sorted spermatogonial cells were counted and gave ~3 × 106 cells from 6 × 106 pre-sorted cells. The purified cells were cultured in vitro for >2 months in L-15 medium containing fetal bovine serum (10%), carp serum (1%) and other supplements. Microscopic observations depicted typical morphological SSC features, bearing a larger nuclear compartment (with visible perinuclear bodies) within a thin rim of cytoplasm. Cells proliferated in vitro forming clumps/colonies. mRNA expression profiling by qPCR documented that proliferating cells were Plzf + and Pou2+, indicative of stem cells. From 60 days onwards of cultivation, the self-renewing population differentiated to produce spermatids (~6 × 107 on day 75). In vitro-produced sperm (2260 sperm/SSC) were free swimming in medium and hence motile (non-progressive) in nature. Of those, 2% were capable of fertilizing and generated healthy diploid fingerlings. Our documented evidence provides the basis for producing fertile magur sperm in vitro from cultured magur SSCs. Our established techniques of SSC propagation and in vitro sperm production together should trigger future in vivo experiments towards basic and applied biology research.
Collapse
|
40
|
Ye H, Yue HM, Yang XG, Li CJ, Wei QW. Identification and sexually dimorphic expression of vasa isoforms in Dabry′s sturgeon (Acipenser dabryanus), and functional analysis of vasa 3′-untranslated region. Cell Tissue Res 2016; 366:203-18. [DOI: 10.1007/s00441-016-2418-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
|
41
|
Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology 2016; 72:119-22. [DOI: 10.1016/j.cryobiol.2016.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
|
42
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
43
|
Linhartová Z, Saito T, Kašpar V, Rodina M, Prášková E, Hagihara S, Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology 2015; 84:1246-1255.e1. [PMID: 26248520 DOI: 10.1016/j.theriogenology.2015.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/29/2022]
Abstract
Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants at 21 days after fertilization. Moreover, the body cavities of MO-treated and nontreated fish were examined by histology and in situ hybridization, showing gonads which had no germ cells in morphants at various stages (60, 150, and 210 days after fertilization). Taken together, these results report the first known and functional method of sturgeon sterilization.
Collapse
Affiliation(s)
- Zuzana Linhartová
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| | - Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Vojtěch Kašpar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Eva Prášková
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Seishi Hagihara
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
44
|
Saito T, Psenicka M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 2015; 93:96. [PMID: 26134864 DOI: 10.1095/biolreprod.115.128314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/03/2015] [Indexed: 11/01/2022] Open
Abstract
Primordial germ cells (PGCs) are the origin of all germ cells in developing embryos. In the sturgeon embryo, PGCs develop from the vegetal hemisphere, which mainly acts as an extraembryonic source of nutrition. Current methods for studying sturgeon PGCs require either killing the fish or using costly and time-consuming histological procedures. Here, we demonstrate that visualization of sterlet (Acipenser ruthenus>) PGCs in vivo is feasible by simply labeling the vegetal hemisphere with fluorescein isothiocyanate (FITC)-dextran. We injected FITC-dextrans, with molecular weights varying between 10 000 and 2 000 000, into the vegetal pole of 1- to 4-cell stage embryos. At the neurula to tail-bud developmental stages, FITC-positive PGC-like cells appeared ventrally around the developing tail bud in the experimental group that received a high-molecular-weight FITC-dextran. The highest average number of FITC-positive PGC-like cells was observed in embryos injected with FITC-dextran having a molecular weight of 500 000 (FD-500). The pattern of migration of the labeled cells was identical to that of PGCs, clearly indicating that the FITC-positive PGC-like cells were PGCs. Labeled vegetal cells, except for the PGCs, were digested and excreted before the embryos starting feeding. FITC-labeled PGCs were observed in the developing gonads of fish for at least 3 mo after injection. We also found that FD-500 could be used to visualize PGCs in other sturgeon species. To the best of our knowledge, this report is the first to demonstrate in any animal species that PGCs can be visualized in vivo for a long period by the injection of a simple reagent.
Collapse
Affiliation(s)
- Taiju Saito
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Psenicka
- Laboratory of Germ Cells, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|