1
|
Asadpour R, Aminirad M, Rahbar M, Hajibemani A, Rezaei Topraggaleh T. Effects of hyaluronic acid on sperm parameters, mitochondrial function and apoptosis of spermatozoa in Simmental bulls with good and poor freezing ability. J Anim Physiol Anim Nutr (Berl) 2024; 108:383-394. [PMID: 37899704 DOI: 10.1111/jpn.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Bulls with varying freezability exhibit substantial variation in semen characteristics after cryopreservation. Sperm freezability is positively correlated with membrane cholesterol content, membrane integrity, mitochondrial activity and antioxidant content. The purpose of this study was to determine the optimal concentration of hyaluronic acid (HA) in bull sperm with different cryotolerances. Simmental bulls (n = 10) semen samples were taken and categorized based on their progressive motility (PM) after freeze-thawing: Group I, consisting of bulls (n = 5) with progressive sperm motility ≥45%, was considered good freezability ejaculates (GF), and Group II, including bulls (n = 5) with progressive sperm motility ≤30%, was considered poor freezability ejaculates (PF) bulls. Semen samples were diluted with a Tris-egg-yolk-glycerol (TEYG) extender containing various concentrations of HA: without HA (control), 1 mM HA, 2 mM HA and 4 mM HA. After the freeze-thaw process, sperm kinematics, plasma membrane and acrosome integrity, mitochondrial activity and apoptotic status were evaluated. The addition of 1 mM HA to the diluent of bulls with GF increased PM and linearity (LIN) compared to the control group (p < 0.05). Normal morphology was improved after thawing in the samples treated with 1 and 2 mM HA in the GF and PF bulls respectively. The membrane and acrosome integrity of GF bulls treated with 1 mM HA was significantly (p < 0.05) greater than that of the control groups. Adding 1 mM HA to the extender of bulls with GF and PF improved the proportion of viable cells compared with the highest concentration (4 mM) of HA. The mitochondrial activity of PF bulls treated with 1 and 2 mM HA was significantly (p < 0.05) greater than that of the controls and 4 mM HA. Finally, it can be concluded that adding low doses of HA (1 mM) to the TEYG extender of GF and PF bulls ameliorated the post-thaw semen quality.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Muhamadreza Aminirad
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Maryam Rahbar
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Abolfazl Hajibemani
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Praxedes ÉA, Santos MVDO, de Oliveira LRM, de Aquino LVC, de Oliveira MF, Pereira AF. Synergistic effects of follicle-stimulating hormone and epidermal growth factor on in vitro maturation and parthenogenetic development of red-rumped agouti oocytes. Reprod Domest Anim 2023; 58:1368-1378. [PMID: 37605306 DOI: 10.1111/rda.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Although oocyte in vitro maturation (IVM) is routinely used for in vitro embryo production in mice and rats, its use in wild rodents remains unexplored. Evidence suggests that hormone and growth factor supplementation influence oocyte meiotic resumption. This study evaluated the synergistic effects of follicle-stimulating hormone (FSH) and epidermal growth factor (EGF) on the IVM and parthenogenetic development of red-rumped agouti oocytes. Initially, we evaluated the IVM rates, mature oocyte quality, oocyte morphometry, and early embryonic development during IVM in the presence of 10, 50, and 75 mIU/mL FSH. No differences among the FSH concentrations were observed for IVM rates, oocyte morphometry, cumulus cell expansion, and viability. Although oocytes matured with 50 mIU/mL FSH showed a higher rate of cumulus expansion index (CEI), only oocytes matured with 10 mIU/mL FSH resulted in morulae after chemical activation (7.9% ± 4.2%). Thus, 10 mIU/mL FSH was used for further experiments. We subsequently evaluated the synergistic effects of 10, 50, and 100 ng/mL EGF and 10 mIU/mL FSH on the same parameters. No differences among the groups were observed in IVM rates, oocyte morphometry, and cumulus viability. Nevertheless, FSH with 10 ng/mL EGF showed a CEI superior to that of the other groups. Furthermore, oocytes matured with FSH alone or with both FSH and 10 or 50 ng/mL EGF developed morulae after activation (5.8%-8.3%). In conclusion, oocytes matured with 10 mIU/mL FSH and 10 ng/mL EGF are recommended for use in red-rumped agouti oocyte IVM, as they positively influence embryonic development.
Collapse
Affiliation(s)
- Érika A Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Rio Grande do Norte, Brazil
| | - Maria Valéria de O Santos
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Rio Grande do Norte, Brazil
| | | | | | - Moacir F de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoró, Rio Grande do Norte, Brazil
| | - Alexsandra F Pereira
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
3
|
Wang C, Sun Q, Li S, Liu G, Ren J, Li Y, Ding X, Zhu J, Dai Y. Isolation of female germline stem cells from neonatal piglet ovarian tissue and differentiation into oocyte-like cells. Theriogenology 2023; 197:186-197. [PMID: 36525858 DOI: 10.1016/j.theriogenology.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
It has been generally accepted that the number of oocyte pool in mammalian ovaries is limited and irreversibly consumed throughout the adulthood until menopause, which has been challenged by the existence of female germline stem cells (FGSCs) and their differentiation potentials into oocytes through mitosis. However, there have been a few reports about the existence of porcine FGSCs (pFGSCs) in the neonatal piglet ovarian tissues. In this study, the pFGSCs were isolated from the one day post partum (1 dpp) piglet ovaries by a differential anchoring velocity method combined with the magnetic cell sorting (MACS) using VASA antibody. The gene expression levels and in vitro differentiation potentials of pFGSCs were subsequently analyzed. The results showed that Oct4, C-kit, Vasa, Stella, Ifitm3 and Dazl were expressed in the pFGSCs. A small portion of pFGSCs (2.81 ± 0.76%) spontaneously differentiated into oocyte-like cells (OLCs) with a mean diameter of 50 μm and gene expressions of Vasa, Ifitm3, Blimp1, Gdf9, Zp3, Dazl and Stella. Compared with that of the spontaneous differentiation system, the differentiation rates of pFGSCs into OLCs were significantly increased after the co-supplementations of porcine follicular fluid (PFF) and retinoic acid (RA). Taken together, these above results revealed the direct evidences for the existence of pFGSCs in 1 dpp piglet ovaries and the in vitro differentiation potential of pFGSCs into OLCs, benefiting future research related to the in vitro establishment of livestock FGSCs and the in vitro differentiation of pFGSCs.
Collapse
Affiliation(s)
- Chunyu Wang
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Qi Sun
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, No. 20 Zhaowuda Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Zip Code: 010050, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yuan Li
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Xiangxiang Ding
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Jie Zhu
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, No. 235 West Univ. Road, Hohhot, Zip Code: 010021, Inner Mongolia, China.
| |
Collapse
|
4
|
Cao W, Zhao J, Qu P, Liu E. Current Progress and Prospects in Rabbit Cloning. Cell Reprogram 2022; 24:63-70. [PMID: 35167365 DOI: 10.1089/cell.2021.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) shows great value in the generation of transgenic animals, protection of endangered animals, and stem cell therapy. The combination of SCNT and gene editing has produced a variety of genetically modified animals for life science and medical research. Rabbits have unique advantages as transgenic bioreactors and human disease models; however, the low SCNT efficiency severely impedes the application of this technology. The difficulty in SCNT may be attributable to the abnormal reprogramming of somatic cells in rabbits. This review focuses on the abnormal reprogramming of cloned mammalian embryos and evaluates the progress and prospects of rabbit somatic cell cloning.
Collapse
Affiliation(s)
- Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
5
|
Ren J, Hao Y, Liu Z, Li S, Wang C, Wang B, Liu Y, Liu G, Dai Y. Effect of exogenous glutathione supplementation on the in vitro developmental competence of ovine oocytes. Theriogenology 2021; 173:144-155. [PMID: 34390905 DOI: 10.1016/j.theriogenology.2021.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022]
Abstract
The beneficial effect of glutathione (GSH) on the in vitro maturation (IVM) of bovine/porcine oocytes has been confirmed; however, the antioxidant effect of exogenous GSH supplementation on the IVM of ovine oocytes has not been determined. In this study, ovine cumulus oocyte complexes (COCs) were classified into three groups according to the layer number of cumulus cells (the Grade A group has more than five layers, the Grade B group has three to four layers and the Grade C group has less than three layers). After in vitro culture of COCs in the presence of exogenous GSH, the meiotic competence of ovine oocytes was assessed by analyzing nuclear maturation to metaphase II (MII) stage, cortical granules (CGs) dynamics, astacin like metalloendopeptidase (ASTL) distribution, histone methylation pattern, reactive oxygen species (ROS) production, mitochondrial activities and genes expression. After in vitro fertilization (IVF), assessments of embryonic development were conducted to confirm the effects of exogenous GSH supplementation. The results showed that exogenous GSH not only enhanced the maturation rates of the Grade B and Grade C groups but also promoted CGs dynamics and ASTL distribution of the Grade A, B and C groups (p < 0.05). Exogenous GSH increased the mitochondrial activities of the Grade A, B and C groups and decreased the ROS production levels of oocytes (p < 0.05), regardless of the layer number of cumulus cells. Moreover, exogenous GSH promoted the expression levels of genes related with oocyte maturation, antioxidant activity and antiapoptotic effects in the Grade B and Grade C groups (p < 0.05). The expression levels of H3K4me3 and H3K9me3 in the Grade B and Grade C groups were promoted after exogenous GSH supplementation (p < 0.05), consistent with the expression levels of genes related with histone methylation (p < 0.05). In addition, exogenous GSH strongly promoted the embryonic developmental competence of Grade B and Grade C groups (p < 0.05). Taken together, our findings provide foundational evidence for the free radical scavenging potential of exogenous GSH in the in vitro developmental competence of ovine oocytes, especially oocytes from COCs lacking cumulus cells. These findings, which demonstrated the potential for improving the quality of ovine oocytes during IVM, will contribute to researches on GSH applications and the efficiency of assisted reproductive technology for ovine breeding.
Collapse
Affiliation(s)
- Jingyu Ren
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Yuchun Hao
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Zhanpeng Liu
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, 20 Zhaowuda Road, Hohhot, 010021, Inner Mongolia, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, 22 Zhaojun Road, Hohhot, 010031, Inner Mongolia, China
| | - Yongbin Liu
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, 22 Zhaojun Road, Hohhot, 010031, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Street, Hohhot, 010050, Inner Mongolia, China.
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, 235 West Univ. Road, Hohhot, 010021, Inner Mongolia, China.
| |
Collapse
|
6
|
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful technique, although challenging, to study reprograming into the totipotent state of differentiated nuclei in mammals. This procedure was initially applied in farm animals, then rodents, and more recently in primates. Nuclear transfer of embryonic stem cells is known to be more efficient, but many types of somatic cells have now been successfully reprogramed with this procedure. Moreover, SCNT reprograming is more effective on a per cell basis than induced Pluripotent Stem Cells (iPSC) and provides interesting clues regarding the underlying processes. In this chapter, we describe the protocol of nuclear transfer in mouse that combines cell cycle synchronization of the donor cells, enucleation of metaphase II oocyte and Piezo-driven injection of a donor cell nucleus followed by activation of the reconstructed embryos and nonsurgical transfer into pseudo-pregnant mice. Moreover, this protocol includes two facultative steps to erase the epigenetic "memory" of the donor cells and improve chromatin remodeling by histones modifications targeting.
Collapse
Affiliation(s)
- Vincent Brochard
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France
| | - Nathalie Beaujean
- Université Paris-Saclay, INRAE, ENVA, BREED U1198, Jouy-en-Josas, France. .,Univ Lyon, Université Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U1208, USC 1361, Bron, France.
| |
Collapse
|
7
|
Peng YX, Chen CZ, Luo D, Yu WJ, Li SP, Xiao Y, Yuan B, Liang S, Yao XR, Kim NH, Jiang H, Zhang JB. Carnosic acid improves porcine early embryonic development by inhibiting the accumulation of reactive oxygen species. J Reprod Dev 2020; 66:555-562. [PMID: 33055461 PMCID: PMC7768177 DOI: 10.1262/jrd.2020-086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that supplementation with 10 μM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and provides new applications for improving the quality of in vitro-developed embryos.
Collapse
Affiliation(s)
- Yan-Xia Peng
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Cheng-Zhen Chen
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Dan Luo
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Wen-Jie Yu
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Sheng-Peng Li
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Yue Xiao
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Bao Yuan
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Shuang Liang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| | - Xue-Rui Yao
- Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Hao Jiang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China.,Department of Animal Science, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jia-Bao Zhang
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Jilin, China
| |
Collapse
|
8
|
Qu J, Sun M, Wang X, Song X, He H, Huan Y. Melatonin Enhances the Development of Porcine Cloned Embryos by Improving DNA Methylation Reprogramming. Cell Reprogram 2020; 22:156-166. [PMID: 32207988 DOI: 10.1089/cell.2019.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Melatonin has been proven to improve the development of cloned embryos, however, the role of melatonin during somatic cell nuclear transfer remains unclear. This work demonstrated that 10-7 M melatonin significantly enhanced the developmental progress, reduced the arrested rate before zygotic genome activation, and upregulated the blastocyst rate of cloned embryos. Melatonin also promoted the pseudo-pronucleus formation, increased blastocyst cell number, and reduced embryo apoptosis through upregulating the expression of antiapoptosis factors while downregulating the transcription of proapoptosis genes. Further study displayed that DNA methylation reprogramming related genes were greatly improved in cloned embryos when treated with melatonin; then, melatonin effectively promoted genomic DNA demethylation and DNA remethylation, DNA demethylation of pluripotency related gene Oct4, DNA methylation maintenance of imprinted gene H19/Igf2, and DNA remethylation of tissue-specific gene Thy1 in cloned embryos. Thus, zygotic genome activation related gene Eif1a, pluripotency related genes Oct4, Nanog, and Sox2, imprinted genes Igf2 and H19, and blastocyst quality related genes Cdx2 and ATP1b1 were remarkably upregulated, and tissue-specific genes Thy1 and Col5a2 were considerably silenced. In conclusion, melatonin enhanced the development of cloned embryos by ameliorating DNA methylation reprogramming. This work reveals that melatonin can regulate DNA methylation reprogramming and provides a novel insight to improve cloning efficiency.
Collapse
Affiliation(s)
- Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingjun Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xuexiong Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
9
|
Enhancement of in Vitro Developmental Outcome of Cloned Goat Embryos After Epigenetic Modulation of Somatic Cell-Inherited Nuclear Genome with Trichostatin A. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In this study, the effect of trichostatin A (TSA)-mediated epigenomic modulation of nuclear donor cells on the in vitro developmental potential of caprine somatic cell cloned embryos was examined. The enucleated ex vivo-matured oocytes were subzonally injected with adult ear skin-derived fibroblast cells exposed or not exposed to TSA (at a concentration of 50 nM). The experiment was designed on the basis of three different approaches to TSA-dependent modulation of donor cell-descended genome: before being used for somatic cell nuclear transfer/SCNT (Group I); immediately after activation of nuclear-transferred (NT) oocytes (Group II); or combined treatment both before being used for SCNT and after activation of NT oocytes (Group III). In the control Group IV, donor cell nuclei have not been treated with TSA at any stage of the experimental design. In TSA-treated Groups I and II and untreated Group IV, cleavage activities of cloned embryos were at the similar levels (80.6%, 79.8% and 77.1%, respectively). But, significant difference was observed between Groups III and IV (85.3 vs. 77.1%). Moreover, in the experimental Groups I and III, the percentages of cloned embryos that reached the blastocyst stages remarkably increased as compared to those noticed in the control Group IV (31.2% vs. 36.7% vs. 18.9%, respectively). In turn, among embryos assigned to Group II, blastocyst formation rate was only slightly higher than that in the control Group IV, but the differences were not statistically significant (25.8% vs. 18.9%). To sum up, TSA-based epigenomic modulation of somatic cell-inherited nuclear genome gave rise to increased competences of caprine cloned embryos to complete their development to blastocyst stages. In particular, sequential TSA-mediated modulation of both nuclear donor cells and activated NT oocytes led to improvement in the blastocyst yields of cloned goat embryos, which can result from enhanced donor cell nuclear reprogrammability.
Collapse
|
10
|
Schumann NAB, Mendonça AS, Silveira MM, Vargas LN, Leme LO, de Sousa RV, Franco MM. Procaine and S-Adenosyl-l-Homocysteine Affect the Expression of Genes Related to the Epigenetic Machinery and Change the DNA Methylation Status of In Vitro Cultured Bovine Skin Fibroblasts. DNA Cell Biol 2019; 39:37-49. [PMID: 31750745 DOI: 10.1089/dna.2019.4934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cloning using somatic cell nuclear transfer (SCNT) has many potential applications such as in transgenic and genomic-edited animal production. Abnormal epigenetic reprogramming of somatic cell nuclei is probably the major cause of the low efficiency associated with SCNT. Strategies to alter DNA reprogramming in donor cell nuclei may help improve the cloning efficiency. In the present study, we aimed to characterize the effects of procaine and S-adenosyl-l-homocysteine (SAH) as demethylating agents during the cell culture of bovine skin fibroblasts. We characterized the effects of procaine and SAH on the expression of genes related to the epigenetic machinery, including the DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 3 beta (DNMT3B), TET1, TET2, TET3, and OCT4 genes, and on DNA methylation levels of bovine skin fibroblasts. We found that DNA methylation levels of satellite I were reduced by SAH (p = 0.0495) and by the combination of SAH and procaine (p = 0.0479) compared with that in the control group. Global DNA methylation levels were lower in cells that were cultivated with both compounds than in control cells (procaine [p = 0.0116], SAH [p = 0.0408], and both [p = 0.0163]). Regarding gene expression, there was a decrease in the DNMT1 transcript levels in cells cultivated with SAH (p = 0.0151) and SAH/procaine (0.0001); a decrease in the DNMT3A transcript levels in cells cultivated with SAH/procaine (p = 0.016); and finally, a decrease in the DNMT3B transcript levels in cells cultivated with procaine (p = 0.0007), SAH (p = 0.0060), and SAH/procaine (p = 0.0021) was found. Higher levels of TET3 transcripts in cells cultivated with procaine (p = 0.0291), SAH (p = 0.0373), and procaine/SAH (p = 0.0013) compared with the control were also found. Regarding the OCT4 gene, no differences were found. Our results showed that the use of procaine and SAH during bovine cell culture was able to alter the epigenetic profile of the cells. This approach may be a useful alternative strategy to improve the efficiency of reprogramming the somatic nuclei after fusion, which in turn will improve the SCNT efficiency.
Collapse
Affiliation(s)
- Naiara A B Schumann
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Anelise S Mendonça
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Márcia M Silveira
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Luna N Vargas
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Ligiane O Leme
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Regivaldo V de Sousa
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Maurício M Franco
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
11
|
Hao J, Xianfeng Y, Gao W, Wei J, Qi M, Han L, Shi S, Lin C, Wang D. The perturbed expression of m6A in parthenogenetic mouse embryos. Genet Mol Biol 2019; 42:666-670. [PMID: 31188932 PMCID: PMC6905444 DOI: 10.1590/1678-4685-gmb-2018-0212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Parthenogenetically activated oocytes cannot develop to term in mammals owing to abnormal epigenetic modifications. Methylation of the N6 position of adenosine (m6A) is a post-transcriptional epigenetic modification of RNA. To investigate the role of m6A methylation in parthenogenetic (PA) embryonic development, we analyzed METTL3, METTL14, FTO, ALKBH5, YTHDF2, IGF2BP1, and IGF2BP2 expression by quantitative real-time PCR. These genes were found dynamically expressed during the 2-cell, 4-cell, 8-cell, and blastocyst stages of the embryo. Compared to normally fertilized embryos, the expression of these genes was perturbed in PA embryos, especially at the 8-cell stage. Furthermore, immunofluorescence was used to detect m6A expression. The results demonstrated that m6A expression decreased in the 2-cell stage, whereas it increased in the 8-cell stage of PA embryos. Taken together, these results suggest that the expression of RNA methylation-related genes was perturbed, leading to abnormal m6A modification during early development in PA embryos.
Collapse
Affiliation(s)
- Jindong Hao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yu Xianfeng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Wei Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Wei
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Minghui Qi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liang Han
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuming Shi
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- Department of Emergency, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
12
|
Fulka H, Ogura A, Loi P, Fulka Jr J. Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming. J Reprod Dev 2019; 65:433-441. [PMID: 31423000 PMCID: PMC6815741 DOI: 10.1262/jrd.2019-017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differentiated nuclei can be reprogrammed/remodelled to totipotency after their transfer to enucleated metaphase II (MII) oocytes. The process of reprogramming/remodelling is, however, only
partially characterized. It has been shown that the oocyte nucleus (germinal vesicle – GV) components are essential for a successful remodelling of the transferred nucleus by providing the
materials for pseudo-nucleus formation. However, the nucleus is a complex structure and exactly what nuclear components are required for a successful nucleus remodelling and reprogramming is
unknown. Till date, the only nuclear sub-structure experimentally demonstrated to be essential is the oocyte nucleolus (nucleolus-like body, NLB). In this study, we investigated what other
GV components might be necessary for the formation of normal-sized pseudo-pronuclei (PNs). Our results showed that the removal of the GV nuclear envelope with attached chromatin and
chromatin-bound factors does not substantially influence the size of the remodelled nuclei in reconstructed cells and that their nuclear envelopes seem to have normal parameters. Rather than
the insoluble nuclear lamina, the GV content, which is dissolved in the cytoplasm with the onset of oocyte maturation, influences the characteristics and size of transferred nuclei.
Collapse
Affiliation(s)
- Helena Fulka
- Institute of Molecular Genetics of the ASCR, 142 20 Prague, Czech Republic.,Institute of Experimental Medicine, 142 20 Prague, Czech Republic
| | - Atsuo Ogura
- RIKEN BioResource Center, Ibaraki 305-0074, Japan
| | - Pasqualino Loi
- Faculty of Veterinary Medicine, University of Teramo, Teramo 64100, Italy
| | - Josef Fulka Jr
- Institute of Animal Science, 140 00 Prague, Czech Republic
| |
Collapse
|
13
|
Song SH, Lee KL, Xu L, Joo MD, Hwang JY, Oh SH, Kong IK. Production of cloned cats using additional complimentary cytoplasm. Anim Reprod Sci 2019; 208:106125. [PMID: 31405460 DOI: 10.1016/j.anireprosci.2019.106125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.
Collapse
Affiliation(s)
- Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Ji-Yoon Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
14
|
Abstract
This manuscript describes the different topics I have been involved in the fields of reproductive
physiology and embryo biotechnologies with attempts to address practical issues raised
mainly by the breeding industry. The journey started with phenotyping work in the field of
reproductive physio-pathology. Other issues were related to the optimization of reproductive
biotechnologies to favorize genetic selection. The implementation of genomic selection
raised opportunities to develop the use embryo biotechnologies and showed the interest of
combining them in the case of embryo genotyping. There is still a need to refine phenotyping
for reproductive traits especially for the identification of markers of uterine dysfunction.
It is believed that new knowledge generated by combining different molecular approaches
will be the source of applications that may benefit AI practice and embryo technologies.
Collapse
Affiliation(s)
- Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
15
|
Nuttinck F. Oocyte related factors impacting on embryo quality: relevance for in vitro embryo production. Anim Reprod 2018; 15:271-277. [PMID: 34178150 PMCID: PMC8202467 DOI: 10.21451/1984-3143-ar2018-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of pregnancy is closely linked to early events that occur during the onset of embryogenesis.
The first stages in embryonic development are mainly governed by the storage of maternal factors
present in the oocyte at the time of fertilisation. In this review, we outline the different
classes of oocyte transcripts that may be involved in activation of the embryonic genome as
well as those associated with epigenetic reprogramming, imprinting maintenance or the control
of transposon mobilisation during preimplantation development. We also report the influence
of cumulus-oocyte crosstalk during the maturation process on the oocyte transcriptome and
how in vitro procedures can affect these interactions.
Collapse
|
16
|
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.
Collapse
|
17
|
Simões R, Rodrigues Santos A. Factors and molecules that could impact cell differentiation in the embryo generated by nuclear transfer. Organogenesis 2018; 13:156-178. [PMID: 29020571 DOI: 10.1080/15476278.2017.1389367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Somatic cell nuclear transfer is a technique to create an embryo using an enucleated oocyte and a donor nucleus. Nucleus of somatic cells must be reprogrammed in order to participate in normal development within an enucleated egg. Reprogramming refers to the erasing and remodeling of cellular epigenetic marks to a lower differentiation state. Somatic nuclei must be reprogrammed by factors in the oocyte cytoplasm to a rather totipotent state since the reconstructed embryo must initiate embryo development from the one cell stage to term. In embryos reconstructed by nuclear transfer, the donor genetic material must respond to the cytoplasmic environment of the cytoplast and recapitulate this normal developmental process. Enucleation is critically important for cloning efficiency because may affect the ultrastructure of the remaining cytoplast, thus resulting in a decline or destruction of its cellular compartments. Nonetheless, the effects of in vitro culturing are yet to be fully understood. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this review we discuss some factors that could impact cell differentiation in embryo generated by nuclear transfer.
Collapse
Affiliation(s)
- Renata Simões
- a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , SP , Brazil
| | | |
Collapse
|
18
|
Song X, Liu Z, He H, Wang J, Li H, Li J, Li F, Jiang Z, Huan Y. Dnmt1s in donor cells is a barrier to SCNT-mediated DNA methylation reprogramming in pigs. Oncotarget 2018; 8:34980-34991. [PMID: 28380421 PMCID: PMC5471028 DOI: 10.18632/oncotarget.16507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/09/2017] [Indexed: 01/27/2023] Open
Abstract
Low development of somatic cell nuclear transfer embryos could be due to the incomplete DNA methylation reprogramming, and Dnmt1s existing in donor cells may be one cause of this disrupted DNA methylation reprogramming. However, the reprogramming pattern of Dnmt1s and its effect on DNA methylation reprogramming in cloned embryos remain poorly understood. Here, we displayed that along with the significantly higher Dnmt1 expression at the zygotic gene activation stage of cloned embryos, genomic methylation level was markedly upregulated, and the arrested rate was significantly higher compared with their in vitro fertilization counterparts. Then, we demonstrated that Dnmt1s, not Dnmt1o, methylation and expression levels in cloned embryos were significantly higher from the 1-cell to 4-cell stage but markedly lower at the blastocyst stage. When Dnmt1s in donor cells was appropriately removed, more cloned embryos passed through the zygotic gene activation stage and the blastocyst rate significantly increased. Furthermore, Dnmt1s knockdown significantly improved itself and genomic methylation reconstruction in cloned embryos. Finally, we found that Dnmt1s removal significantly promoted the demethylation and expression of pluripotent genes in cloned embryos. Taken together, these data suggest that Dnmt1s in donor cells is a critical barrier to somatic cell nuclear transfer mediated DNA methylation reprogramming, impairing the development of cloned embryos.
Collapse
Affiliation(s)
- Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan, Shandong Province, China
| | - Jianyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Huatao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Fangzheng Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhongling Jiang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
20
|
Chi D, Zeng Y, Xu M, Si L, Qu X, Liu H, Li J. LC3-Dependent Autophagy in Pig 2-Cell Cloned Embryos Could Influence the Degradation of Maternal mRNA and the Regulation of Epigenetic Modification. Cell Reprogram 2017; 19:354-362. [PMID: 29058487 DOI: 10.1089/cell.2017.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, the distribution as well as the effect of autophagy on reprogramming in pig cloned embryos were observed immediately after somatic cell nuclear transfer. Results showed that the LC3 was at the highest level in cloned embryos at 2-cell stage, and it decreased with the development from 2-cell stage to blastocyst. Different to cloned embryos, the intensity of LC3 in parthenogenetic activation (PA) embryos was at the highest level at 4-cell stage. A markedly higher level of Bmp15, H1foo, and Dppa3 was shown in cloned embryos at 2-cell stage (p < 0.05 or p < 0.01), but a significantly lower level of LC3, Sox2, and eIF1A was observed at 4-cell stage (p < 0.05), compared with PA embryos. When the efficient interfering by the LC3 siRNA was performed on the cloned embryos (p < 0.01), not only the mRNA level of maternal Cyclin B, Bmp15, Gdf9, c-mos, H1foo, and Dppa3 was increased significantly (p < 0.05), but also the expression of Dnmt1 and Dnmt3b was obviously upregulated (p < 0.05). Although the expression of Sox2 and Oct4 is not changed, the expression of Stat3 decreased significantly (p < 0.05). Furthermore with the treatment of 200 nM rapamycin, the expression of eIF1A and Stat3 was significantly increased at 4-cell stage. In conclusion, the LC3-dependent autophagy mainly occurred in cloned embryos at 2-cell stage, but at 4-cell stage in PA embryos. In addition, the modulation of autophagy could affect genome activation by influencing the degradation of maternal mRNA and regulating the expression of DNA methyltransferase.
Collapse
Affiliation(s)
- Daming Chi
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Yaqiong Zeng
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Mingzhu Xu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Linan Si
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Xiao Qu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| |
Collapse
|
21
|
|
22
|
Wang S, Liu B, Liu W, Xiao Y, Zhang H, Yang L. The effects of melatonin on bovine uniparental embryos development in vitro and the hormone secretion of COCs. PeerJ 2017; 5:e3485. [PMID: 28698819 PMCID: PMC5502088 DOI: 10.7717/peerj.3485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 12/23/2022] Open
Abstract
Melatonin is a unique multifunctional molecule that mediates reproductive functions in animals. In this study, we investigated the effects of melatonin on bovine parthenogenetic and androgenetic embryonic development, oocyte maturation, the reactive oxygen species (ROS) levels in parthenogenetic and androgenetic embryos and cumulus—oocyte complexes (COCs) hormone secretion with melatonin supplementation at four concentrations (0, 10, 20, and 30 pmol/mL), respectively. The results showed that melatonin significantly promoted the rates of bovine parthenogenetic and androgenetic embryonic cleavage and morula and blastocysts development (P < 0.05). The rate of cleavage was higher in the androgenetic embryo than that in the parthenogenetic embryo. Compared with the parthenogenetic embryos, the androgenetic embryos had a poor developmental competence from morula to blastocyst stage. Moreover, the levels of ROS were significantly lower in the parthenogenetic and androgenetic embryoes with melatonin-treated group than that of the control group (P < 0.05). Melatonin supplemented significantly increased the maturation rate of oocyte in vitro (P < 0.05). More importantly, melatonin significantly promoted the secretion of progesterone and estradiol by COCs (P < 0.05). To reveal the regulatory mechanism of melatonin on steroids synthesis, we found that steroidogenic genes (CYP11A1, CYP19A1 and StAR) were upregulated, suggesting that melatonin regulated estradiol and progesterone secretion through mediating the expression of steroidogenic genes (CYP11A1, CYP19A1 and StAR). In addition, MT1 and MT2 were identified in bovine early parthenogenetic and androgenetic embryos using western blot. It could be concluded that melatonin had beneficial effects on bovine oocyte in vitro maturation, COC hormone secretion, early development of subsequent parthenogenetic and androgenetic embryos. It is inferred that melatonin could be used to enhance the efficiency of in vitro developed embryos.
Collapse
Affiliation(s)
- Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China.,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Baoru Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Wenju Liu
- College of Animal Science, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Yao Xiao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Hualin Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
23
|
Tao J, Zhang Y, Zuo X, Hong R, Li H, Liu X, Huang W, Cao Z, Zhang Y. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos. PLoS One 2017. [PMID: 28632762 PMCID: PMC5478106 DOI: 10.1371/journal.pone.0179436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment for 12 or 24 h significantly enhanced the blastocyst rate of SCNT embryos and dramatically reduced the level of H3K79me2 during SCNT 1-cell embryonic development. Additionally, H3K79me2 level in the EPZ-treated SCNT embryos was similar to that in in vitro fertilized embryos, suggesting that DOT1L-mediated H3K79me2 is a reprogramming barrier to early development of porcine SCNT embryos. qRT-PCR analysis further demonstrated that DOT1L inactivation did not change the expression levels of DOT1L itself but increased the expression levels of POU5F1, LIN28, SOX2, CDX2 and GATA4 associated with pluripotency and early cell differentiation. In conclusion, DOT1L inhibitor improved early developmental efficiency of porcine SCNT embryos probably via inducing the increased expression of genes important for pluripotency and lineage specification.
Collapse
Affiliation(s)
- Jia Tao
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu Zhang
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyuan Zuo
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Renyun Hong
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hui Li
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Xing Liu
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Weiping Huang
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zubing Cao
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- * E-mail:
| | - Yunhai Zhang
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
24
|
The developmental competence of oocytes parthenogenetically activated by an electric pulse and anisomycin treatment. Biotechnol Lett 2016; 39:189-196. [PMID: 27864653 DOI: 10.1007/s10529-016-2249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the developmental competence of oocytes parthenogenetically activated by an electric pulse (EP) and treated with anisomycin and to determine whether this method is applicable to somatic cell nuclear transfer (SCNT). RESULTS Embryos derived from porcine oocytes parthenogenetically activated by an EP and treatment with 0.01 µg/mL anisomycin had a significantly improved in vitro developmental capacity. Furthermore, 66.6% of blastocysts derived from these embryos had a diploid karyotype. The blastocyst formation rate of cloned embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 0.01 µg/mL anisomycin for 4 h. The level of maturation-promoting factor was significantly decreased in oocytes activated by an EP and treated with anisomycin. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR. CONCLUSION Our results demonstrate that porcine oocyte activation via an EP in combination with anisomycin treatment can lead to a high blastocyst formation rate in parthenogenetic activation and SCNT experiments.
Collapse
|