1
|
Bari Ö, Sabancı AÜ, Avci G, Bozkurt B, Üstüner B, Denk B, Özalp GR. Canine oocyte nuclear maturation with Nano-ozone (NZS) supplementation: The alterations of antioxidant, and oxidant status and CDK1, cyclin B1 expressions. Reprod Biol 2024; 24:100929. [PMID: 39154626 DOI: 10.1016/j.repbio.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
This study aims to evaluate the effects of nano-ozone solution (NZS) on canine oocyte nuclear maturation, associated with the alterations of antioxidant and oxidant status and cyclin-dependent kinase 1 (CDK1), cyclin B1 gene expressions. Oocytes were cultured in four distinct concentrations of NZS (0.5, 1, 2, and 5 µg/mL) and parthenogenetically activated. The rates of oocytes arrested at the Germinal Vesicle (GV), Germinal Vesicle Breakdown (GVBD), Metaphase I (MI), and Metaphase II (MII) stages were statistically different among groups (P < 0.05). The oocytes cultured in 1 µg/mL NZS yielded the best oocyte maturation rate at the MI and MII stages; however, the lowest maturation and high degeneration rates were observed in Group E. The measurements of Malondialdehyde (MDA), reduced Glutathione (GSH), Superoxide Dismutase (SOD), and Ferric Reducing/Antioxidant Power assay (FRAP) were performed from IVM culture media. No statistical difference was observed in SOD and MDA results (P > 0.05). GSH levels were statistically significant between Group A-Group E (p = 0.003), Group B-Group E (p = 0.045), and Group E-Group D (p = 0.021). The culture media in Group D and Group E had high FRAP concentrations and significantly differed between groups (P < 0.05). CDK1, and cyclin B1 genes, which are subunits of maturation-promoting factor (MPF), are upregulated in Group B and Group C, while are downregulated in oocytes of Group E. This study showed that low, controlled doses of NZS (1 µg/mL) supplementation could improve the meiotic competence of canine oocytes and lead to positive response in expressions of CDK1 and cyclin B1 on the gene level.
Collapse
Affiliation(s)
- Ö Bari
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - A Ü Sabancı
- Bursa Çekirge State Hospital, Orthopedics and Traumatology Clinic, Bursa, Türkiye
| | - G Avci
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - B Bozkurt
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - B Üstüner
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - B Denk
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - G R Özalp
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
2
|
Nejadali Chaleshtari S, Amini E, Baniasadi F, Tavana S, Ghalamboran M. Oocyte maturation, fertilization, and embryo development in vitro by green and chemical iron oxide nanoparticles: a comparative study. Sci Rep 2024; 14:14157. [PMID: 38898126 PMCID: PMC11187103 DOI: 10.1038/s41598-024-65121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Oxidative stress is considered one of the main challenges for in vitro maturation (IVM) and makes assisted reproductive technology (ART), including IVF and embryonic development less effective. Reducing free radicals via biocompatible nanoparticles (NPs) is one of the most promising approaches for developing IVM. We investigated the comparative effect of green and chemically synthesized iron oxide nanoparticles (IONPs) with an aqueous extract of date palm pollen (DPP) on oocyte parameters related to the IVM process. To this end, IONPs were synthesized by chemical (Ch-IONPs) and green methods (G-IONPs using DPP) and characterized. The mature oocyte quality of the Ch-IONPs and G-IONPs groups was evaluated by JC1 and Hoechst staining, Annexin V-FITC-Propidium Iodide, 2', 7'-dichlorofluorescein diacetate, and dihydroethidium staining compared to the control group. Eventually, the mature oocytes were fertilized, promoted to blastocysts (BL), and evaluated in vitro. Compared with the control and G-IONPs groups, the Ch-IONPs-treated group produced more hydrogen peroxide and oxygen radicals. Compared with the Ch-IONPs group, the fertilization rate in the G-IONPs and control groups increased significantly. Finally, the G-IONPs and control groups exhibited a significant increase in the 2PN, 2-cell, 4-cell, 8-cell, compacted morula (CM), and BL rates compared with the Ch-IONPs group. Green synthesis of IONPs can reduce the toxicity of chemical IONPs during the IVM process. It can be concluded that G-IONPs encased with DPP compounds have the potential to protect against exogenous reactive oxygen species (ROS) production in an IVM medium, which can have a crucial effect on oocyte maturation and fertilization efficiency.
Collapse
Affiliation(s)
- Shamim Nejadali Chaleshtari
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohammadreza Ghalamboran
- Department of Plants Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Jiao A, Sun J, Sun Z, Zhao Y, Han T, Zhang H, Gao Q. Effects of limonin on oxidative stress and early apoptosis in oocytes during in vitro maturation. Theriogenology 2024; 218:8-15. [PMID: 38290232 DOI: 10.1016/j.theriogenology.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
To investigate the effects of limonin (Lim) on oxidative stress and early apoptosis in bovine oocytes during in vitro maturation (IVM), different concentrations of Lim (0, 10, 20, 50 μmol/L) were added to bovine IVM medium. Oocyte maturation rates and development 24 h after in vitro fertilization (IVF) were examined to determine the optimal Lim concentration. The optimal Lim concentration was added to the IVM medium, and 0 μmol/L Lim was used as the control. Immunofluorescence staining was used to detect the abnormal rate of spindle assembly, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP) levels, mitochondrial distribution, and the fluorescence intensity of cathepsin B (CB)-active LC3 protein. RT‒qPCR was used to detect the mRNA expression levels of antioxidant-, apoptosis- and autophagy-related genes in oocytes. The total number of blastocysts and the proportion of apoptotic cells among blastocysts were detected. The results showed that the PBI ejection rate, cleavage rate and blastocyst rate of bovine oocytes in the 20 μmol/L Lim group were significantly higher than those in the control group (P < 0.05). Compared with those in the control group, ROS levels, abnormal mitochondrial distribution, the proportion of abnormal spindle assembly, CB activity and LC3 protein fluorescence intensity of oocytes in the 20 μmol/L Lim group were significantly decreased (P < 0.05), and GSH and MMP levels were significantly increased (P < 0.05). The expression of antioxidant genes (Prdx3, Prdx6, Sirt1) and antiapoptotic genes (Bcl-xl, Survivin) were significantly upregulated (P < 0.05), and the expression levels of proapoptotic genes (Caspase-4, BAX) and autophagy-related genes (LC3) were significantly downregulated (P < 0.05). The total number of cells among in vitro fertilized embryos was significantly increased (P < 0.05), and the apoptosis rate of blastocysts was significantly decreased (P < 0.05). Here, we show that Lim exerts positive effects on bovine oocyte IVM by regulating REDOX homeostasis, reducing spindle damage and enhancing mitochondrial function during IVM, thereby inhibiting oocyte apoptosis and autophagy.
Collapse
Affiliation(s)
- Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Jingyu Sun
- Tianjin Limu Biotechnology Co., LTD., Tianjin, 300456, China
| | - Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China.
| |
Collapse
|
4
|
Yang G, Li S, Cai S, Zhou J, Ye Q, Zhang S, Chen F, Wang F, Zeng X. Dietary methionine supplementation during the estrous cycle improves follicular development and estrogen synthesis in rats. Food Funct 2024; 15:704-715. [PMID: 38109056 DOI: 10.1039/d3fo04106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The follicle is an important unit for the synthesis of steroid hormones and the oocyte development and maturation in mammals. However, the effect of methionine supply on follicle development and its regulatory mechanism are still unclear. In the present study, we found that dietary methionine supplementation during the estrous cycle significantly increased the number of embryo implantation sites, as well as serum contents of a variety of amino acids and methionine metabolic enzymes in rats. Additionally, methionine supplementation markedly enhanced the expression of rat ovarian neutral amino acid transporters, DNA methyltransferases (DNMTs), and cystathionine gamma-lyase (CSE); meanwhile, it significantly increased the ovarian concentrations of the metabolite S-adenosylmethionine (SAM) and glutathione (GSH). In vitro data showed that methionine supply promotes rat follicle development through enhancing the expression of critical gene growth differentiation factor 9 and bone morphogenetic protein 15. Furthermore, methionine enhanced the relative protein and mRNA expression of critical genes related to estrogen synthesis, ultimately increasing estrogen synthesis in primary ovarian granulosa cells. Taken together, our results suggested that methionine promoted follicular growth and estrogen synthesis in rats during the estrus cycle, which improved embryo implantation during early pregnancy. These findings provided a potential nutritional strategy to improve the reproductive performance of animals.
Collapse
Affiliation(s)
- Guangxin Yang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Junyan Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, Hu Hubei Hongshan Laboratory. College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, PR. China
| |
Collapse
|
5
|
Keane JA, Ealy AD. An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse Effects. Animals (Basel) 2024; 14:330. [PMID: 38275789 PMCID: PMC10812430 DOI: 10.3390/ani14020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.
Collapse
Affiliation(s)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| |
Collapse
|
6
|
Maddahi A, Saberivand A, Hamali H, Jafarpour F, Saberivand M. Exploring the impact of heat stress on oocyte maturation and embryo development in dairy cattle using a culture medium supplemented with vitamins E, C, and coenzyme Q10. J Therm Biol 2024; 119:103759. [PMID: 38035528 DOI: 10.1016/j.jtherbio.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
Heat stress is a significant factor affecting the fertility of dairy cattle due to the generation of free radicals. In assisted reproductive techniques, the inclusion of protective antioxidants becomes crucial to mitigate potential cellular damage. This study aimed to explore the impact of supplementing vitamins E, C, and coenzyme Q10 into the oocyte culture medium, with the goal of ameliorating the adverse effects of heat stress on oocyte maturation and embryo development in dairy cattle. A group of fifty Holstein dairy cows were synchronized, and their oocytes were harvested using the ovum pick-up method. High-quality oocytes were subjected to in vitro maturation (IVM) and in vitro fertilization (IVF) procedures, utilizing a culture medium containing, no supplements (Group 1), 100 μM of vitamins E (Group 2) and C (Group 3), along with 50 μM of coenzyme Q10 (Group 4). The ensuing zygotes were cultured, and the ensuing embryos were evaluated for blastocyst formation by the seventh day. An analysis of the blastocysts' inner cell mass (ICM) and trophectoderm (TE) cells was also conducted. The findings revealed that the group receiving supplementation of vitamin E and coenzyme Q10 exhibited significantly higher maturation and cleavage rates in comparison to both the control and the vitamin C groups. Furthermore, the count of ICM, TE, and blastocyst cells was notably elevated in the vitamin E supplemented group when compared to the control group. In summary, the effectiveness of vitamin E in enhancing IVM, IVF, and embryo development under conditions of heat stress surpassed that of vitamin C and coenzyme Q10.
Collapse
Affiliation(s)
- Aref Maddahi
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Hossein Hamali
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Farnoosh Jafarpour
- Department of Embryology, Royan Biotechnology Research Institute, Isfahan, Iran.
| | - Maryam Saberivand
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
7
|
Elgendy O, Kitahara G, Yamada K, Taniguchi S, Osawa T. 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress. J Reprod Dev 2023; 69:261-269. [PMID: 37599082 PMCID: PMC10602763 DOI: 10.1262/jrd.2023-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
A high temperature-humidity index during summer has deleterious effects on mitochondrial function, reducing oocyte developmental competence. 5-Aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) are both known to support mitochondrial function and have strong anti-oxidant and anti-apoptotic activities. This study aimed to determine the mechanism of action of 5-ALA/SFC on oocyte quality. Bovine oocytes were collected from medium-sized follicles during summer (July-September, temperature-humidity index:76.6), cultured with 0, 1, 2, 4, and 8 µM 5-ALA with SFC at a molar ratio of 1:0.125, fertilized, and cultured for 10 days. The addition of 8/1 µM 5-ALA/SFC had a deleterious effect on oocyte cleavage rate in comparison with control oocytes, but did not affect the blastocyst rate, while 1/0.125 µM 5-ALA/SFC had a significantly higher increase in blastocyst rate than 8/1 µM 5-ALA/SFC. The addition of 1/0.125 and 2/0.25 µM 5-ALA/SFC improved oocyte quality by increasing the mitochondrial distribution pattern and metaphase-II oocytes, reducing reactive oxygen species and upregulating nuclear factor erythroid-2-related factor 2, heme oxygenase-1, and superoxide dismutase-1 in oocytes, and nuclear factor erythroid-2-related factor 2 and mitochondrial transcription factor A in cumulus cells. These results indicate that 1/0.125 and 2/0.25 µM 5-ALA/SFC may support oocyte quality and developmental competence and provide anti-oxidant actions in cumulus-oocyte complexes.
Collapse
Affiliation(s)
- Omnia Elgendy
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Qalyobia 13736, Egypt
| | - Go Kitahara
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Shin Taniguchi
- One Health Business Department, Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan
- Present: Hokusatsu Regional Promotion Bureau, Kagoshima pref., Kagoshima, Japan
| | - Takeshi Osawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
8
|
Silva MRL, Alves JPM, Fernandes CCL, Cavalcanti CM, Conde AJH, Bezerra AF, Soares ACS, Tetaping GM, de Sá NAR, Teixeira DÍA, do Rego AC, Rodrigues APR, Rondina D. Use of green microalgae Chlorella as a nutritional supplement to support oocyte and embryo production in goats. Anim Reprod Sci 2023; 256:107296. [PMID: 37487276 DOI: 10.1016/j.anireprosci.2023.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
This study aimed to evaluate the use of green microalgae as a nutritional supplement for oocyte and embryo production in goats. Two experiments were performed on adult goats to obtain oocytes (EVO; n = 14) and in vivo embryos (IVD; n = 14). In both, the donors were divided into control (n = 7) and Chlorella (n = 7) groups. All goats received a base diet, and donors were orally supplemented with Chlorella pyrenoidosa (CH) in the Chlorella groups. For EVO, donors received 10 g CH for 14 days, and for IVD, 20 g CH was given for six days before embryo recovery. In EVO and IVD, food intake in the CH group was comparatively low, and it showed relatively high subcutaneous adipose deposition. In addition, the CH group exhibited an increase in triglyceride, cholesterol, and plasma glucose levels. In IVD, a significant increase in peripheral glutathione peroxidase levels was noticed. In EVO, the CH group showed relatively large follicular size and an increase in intrafollicular levels of triglycerides, glucose, and glutathione peroxidase. No differences were observed in the oocyte collected, and CH oocytes showed a low intensity of MitoTracker fluorescence (MT). In IVD, the CH group had a high proportion of transferable embryos, and these structures exhibited high fluorescence intensities for MT and H2DCFDA probes. We concluded that under these conditions, CH did not enhance the quality of the recovered oocytes. However, a daily dose of 20 g CH improved the quality of embryos and stimulated their mitochondrial functionality.
Collapse
Affiliation(s)
- Maria Raquel Lopes Silva
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará 60714-903, Brazil
| | | | | | - Camila Muniz Cavalcanti
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará 60714-903, Brazil
| | | | | | | | - Gildas Mbemya Tetaping
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará 60714-903, Brazil
| | | | | | - Anibal Coutinho do Rego
- Department of Animal Science, Federal University of Ceará (UFC), Fortaleza, Ceará 60021-970 Brazil
| | | | - Davide Rondina
- School of Veterinary Medicine, Ceará State University (UECE), Fortaleza, Ceará 60714-903, Brazil.
| |
Collapse
|
9
|
Supplementation of culture medium with quercetin improves mouse blastocyst quality and increases the expression of HIF-1α protein. ZYGOTE 2023; 31:225-236. [PMID: 36843100 DOI: 10.1017/s0967199423000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Regarding the low number of embryos that reach the blastocyst stage when cultured in vitro, this study aimed to evaluate the effects of quercetin on pre-implantation mouse (Mus musculus) embryos obtained using in vitro fertilization, especially during the passage from morula to blastocyst. Furthermore, we studied whether quercetin also affected the expression of hypoxia-inducible factor 1α (HIF-1α). The culture medium for the embryos was supplemented with quercetin, for long or short periods of time, and then the development potential, total cell number, apoptosis rates and expression of HIF-1α were studied to determine the effect of quercetin. Embryos failed to develop when cultured for long periods of time with quercetin, implying the possible toxic effects of this, alternatively antioxidant, compound. However, a short culture from morula to blastocyst significantly improved the development potential of in vitro produced embryos, increasing the final total cell number and reducing the apoptosis rate, observing similar results to those embryos cultured in low-oxygen concentrations or developed in utero. Furthermore, in embryos treated with quercetin for 2 or 4 h we found an increase in HIF-1α compared with untreated embryos. This work could imply a way to use quercetin in fertility clinics to improve the production of healthy blastocysts and, consequently, increase the success rates in assisted reproduction techniques.
Collapse
|
10
|
Liu N, Si X, Ji Y, Yang Q, Bai J, He Y, Jia H, Song Z, Chen J, Yang L, Zeng S, Yang Y, Wu Z. l-Proline improves the cytoplasmic maturation of mouse oocyte by regulating glutathione-related redox homeostasis. Theriogenology 2023; 195:159-167. [DOI: 10.1016/j.theriogenology.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
11
|
Zhu Q, Ding D, Yang H, Zou W, Yang D, Wang K, Zhang C, Chen B, Ji D, Hao Y, Xue R, Xu Y, Wang Q, Wang J, Yan B, Cao Y, Zou H, Zhang Z. Melatonin Protects Mitochondrial Function and Inhibits Oxidative Damage against the Decline of Human Oocytes Development Caused by Prolonged Cryopreservation. Cells 2022; 11:cells11244018. [PMID: 36552782 PMCID: PMC9776420 DOI: 10.3390/cells11244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MT) can improve the effect of cryopreservation on oocytes by suppressing oxidative stress and maintaining the permeability of the oolemma. In this study, MT was firstly applied to human oocytes' cryopreservation to explore the effect of prolonged cryopreservation on developmental competence and its role. Collected in vitro-matured human oocytes were cryopreserved in MT-containing or MT-free medium for 0 and 6 months; after warming, viable oocytes were assessed for developmental viability, intracellular protein expression, mitochondrial function, and oxidation-antioxidant system. Meanwhile, fresh oocytes were set as the control. The results showed that with the extension of cryopreservation time, the developmental competence of oocytes gradually declined, accompanied by the down-regulation of most mitochondrial function-related proteins, the reduction in ATP and GSH production, the increase in ROS accumulation, and the aggravation of the imbalance of ROS/GSH in oocytes. However, the participation of MT seemed to effectively mitigate these negative effects. Therefore, we speculate that melatonin may maintain normal ATP production and ROS/GSH balance in cryopreserved oocytes by protecting mitochondrial function and inhibiting oxidative damage, thereby effectively maintaining the developmental competence of human oocytes in prolonged cryopreservation.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Ding Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Han Yang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Kaijuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Chao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yan Hao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Rufeng Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Qiushuang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Bo Yan
- The Second Clinical Medical School, Anhui Medical University, Hefei 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei 230032, China
- Anhui Provincial Engineering Research Center of Biopreservation and Artificial Organs, Hefei 230032, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| | - Zhiguo Zhang
- Department of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
12
|
Culture conditions for in vitro maturation of oocytes – A review. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Sabry R, Nguyen M, Younes S, Favetta LA. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Mol Cell Endocrinol 2022; 545:111574. [PMID: 35065199 DOI: 10.1016/j.mce.2022.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol A is a widespread endocrine disruptor with numerous effects on reproductive functions. Limitations on BPA in manufacturing has prompted the use of analogs, such as BPS and BPF, with limited research on their safety. The objective of this study was to evaluate the effects of BPA and its analogs on oxidative stress levels within bovine granulosa cells and to measure the expression of key antioxidant genes. Results indicate that BPA and BPF reduce cell viability and induce mitochondrial dysfunction and all three bisphenols increased production of reactive oxygen species as early as 12hrs post exposure. BPA increased the levels of antioxidants at 12hrs at the mRNA and protein levels, while these results were not significant at 48hrs. These results together suggest that BPA and its analogs can induce oxidative stress within bovine granulosa cells, although not necessarily through common mechanisms. Therefore, the use of BPA analogs may have to be re-considered.
Collapse
Affiliation(s)
- R Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Nguyen
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - S Younes
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
14
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Yousefian I, Zare-Shahneh A, Goodarzi A, Baghshahi H, Fouladi-Nashta AA. The effect of Tempo and MitoTEMPO on oocyte maturation and subsequent embryo development in bovine model. Theriogenology 2021; 176:128-136. [PMID: 34607131 DOI: 10.1016/j.theriogenology.2021.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are one of the factors which reduces oocyte quality and viability of the in vitro produced embryos. Oocyte mitochondria are the major source of ROS production, hence, and the addition of mitochondrion-specific antioxidants could be suggested to minimize the damage caused by ROS during culture. MitoTEMPO, a targeted mitochondrial antioxidant, is formed by conjugating TEMPO to triphenylphosphonium and has an activity like that of superoxide dismutase. It can pass through lipid bilayers easily and accumulate selectively in mitochondria. The goal of this study was to investigate the effects of MitoTEMPO and its non-targeted form, TEMPO, on the developmental competence of bovine oocytes. Accordingly, oocytes were cultured in maturation medium supplemented with either five mM TEMPO (T5) or one μM MitoTEMPO (M1), or T5 + M1 (MT15), or without the antioxidants (C). Nuclear maturation to metaphase II (MII) stage, intracellular glutathione (GSH) content and ROS levels in matured oocytes were analyzed. In addition, cleavage after in vitro fertilization, and blastocyst rates, total cell number in blastocysts as well as the relative abundance of apoptosis-related genes (BAX and BCL2) in blastocysts were determined. Results revealed that the proportion of oocytes at the MII stage, embryos at the blastocyst stage and total cell number in blastocysts increased significantly in the M1 group compared to the C and T5 groups. The levels of intracellular GSH and ROS in oocytes decreased in the M1 group than in the C group (P < 0.05). The expression level of the pro-apoptotic gene (BAX) reduced in blastocysts from the M1 group in comparison to the C and T5 groups (P < 0.05). On the other hand, the expression level of anti-apoptotic gene (BCL2) in obtained blastocysts was not affected by TEMPO and MitoTEMPO. However, the ratio of BAX/BCL2 in blastocysts from the M1 and MT15 groups decreased significantly compared to the C group. These findings suggest that MitoTEMPO can mitigate the adverse effects of oxidative stress on the developmental competence of bovine oocytes.
Collapse
Affiliation(s)
- I Yousefian
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A Zare-Shahneh
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - A Goodarzi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - H Baghshahi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Campus, UK
| |
Collapse
|
16
|
Sollecito N, Alves R, Beletti M, Pereira E, Miranda M, Silva J, Borges A. Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50μM/mL cysteamine; and T3, T4 and T5) adding 2.5μg/mL, 5.0μg/mL or 10.0μg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.
Collapse
Affiliation(s)
| | - R.N. Alves
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
17
|
García-Martínez T, Vendrell-Flotats M, Martínez-Rodero I, Ordóñez-León EA, Álvarez-Rodríguez M, López-Béjar M, Yeste M, Mogas T. Glutathione Ethyl Ester Protects In Vitro -Maturing Bovine Oocytes against Oxidative Stress Induced by Subsequent Vitrification/Warming. Int J Mol Sci 2020; 21:ijms21207547. [PMID: 33066129 PMCID: PMC7588878 DOI: 10.3390/ijms21207547] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
This study aimed to examine whether the addition of glutathione ethyl ester (GSH-OEt) to the in vitro maturation (IVM) medium would improve the resilience of bovine oocytes to withstand vitrification. The effects of GSH-OEt on spindle morphology, levels of reactive oxygen species (ROS), mitochondrial activity and distribution, and embryo developmental potential were assessed together with the expression of genes with a role in apoptosis (BAX, BCL2), oxidative-stress pathways (GPX1, SOD1), water channels (AQP3), implantation (IFN-τ) and gap junctions (CX43) in oocytes and their derived blastocysts. Vitrification gave rise to abnormal spindle microtubule configurations and elevated ROS levels. Supplementation of IVM medium with GSH-OEt before vitrification preserved mitochondrial distribution pattern and diminished both cytoplasmic and mitochondrial ROS contents and percentages of embryos developing beyond the 8-cell stage were similar to those recorded in fresh non-vitrified oocytes. Although not significantly different from control vitrified oocytes, vitrified oocytes after GSH-OEt treatment gave rise to similar day 8-blastocyst and hatching rates to fresh non-vitrified oocytes. No effects of GSH-OEt supplementation were noted on the targeted gene expression of oocytes and derived blastocysts, with the exception of GPX1, AQP3 and CX43 in derived blastocysts. The addition of GSH-OEt to the IVM medium before vitrification may be beneficial for embryo development presumably as the consequence of additional anti-oxidant protection during IVM.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
| | - Erika Alina Ordóñez-León
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Grupo InVitro, Tabasco 86040, Mexico
| | - Manuel Álvarez-Rodríguez
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.Á.-R.); (M.L.-B.)
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (M.V.-F.); (I.M.-R.); (E.A.O.-L.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
18
|
Cyanidin improves oocyte maturation and the in vitro production of pig embryos. In Vitro Cell Dev Biol Anim 2020; 56:577-584. [PMID: 32754855 DOI: 10.1007/s11626-020-00485-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
The objective of this study was to reduce the negative effects of oxidative stress by decreasing the levels of reactive oxygen species (ROS) through supplementation of the major antioxidants present in elderberries: kuromanin and cyanidin. Oocytes (n = 1150) were supplemented with 100 or 200 μM of kuromanin or cyanidin during maturation, and then evaluated for ROS levels or fertilized and evaluated for penetration, polyspermic penetration, male pronucleus formation, and embryonic development. The ROS levels and incidence of polyspermic penetration were lower (P < 0.05) in oocytes supplemented with 100 μM cyanidin when compared with other treatments. Supplementation of 100 μM cyanidin increased (P < 0.05) MPN and blastocyst formation compared with other treatments. However, supplementation of 100 μM kuromanin did not have significant effects on the criteria evaluated, and supplementation of 200 μM kuromanin had significant (P < 0.05) detrimental effects for each criterion. Additional oocytes (n = 1438) were supplemented with 100 μM cyanidin during maturation and evaluated for glutathione, glutathione peroxidase, catalase, and superoxide dismutase activity. Supplementation of 100 μM cyanidin increased (P < 0.05) catalase activity and intracellular GSH levels compared with no supplementation of cyanidin. These results indicate that supplementing cyanidin during maturation reduces oxidative stress by reducing ROS levels and increasing GSH concentrations within the oocyte.
Collapse
|
19
|
Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality. Int J Mol Sci 2020; 21:ijms21155340. [PMID: 32727154 PMCID: PMC7432792 DOI: 10.3390/ijms21155340] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nobiletin is a polymethoxylated flavonoid isolated from citrus fruits with wide biological effects, including inhibition of reactive oxygen species (ROS) production and cell cycle regulation, important factors for oocyte in vitro maturation (IVM). Therefore, the objective of the present study was to evaluate the antioxidant activity of nobiletin during IVM on matured bovine oocyte quality (nuclear and cytoplasmic maturation; oocyte mitochondrial activity; intracellular ROS and glutathione (GSH) levels) and their developmental competence, steroidogenesis of granulosa cells after maturation, as well as quantitative changes of gene expression in matured oocytes, their cumulus cells, and resulting blastocysts. Bovine cumulus-oocyte complexes were in vitro matured in TCM-199 +10% fetal calf serum (FCS) and 10 ng/mL epidermal growth factor (EGF) (Control) supplemented with 10, 25, 50, or 100 μM of nobiletin (Nob10, Nob25, Nob50, and Nob100, respectively) or 0.1% dimethyl sulfoxide (CDMSO: vehicle for nobiletin dilution). A significantly higher percentage of matured oocytes in metaphase II was observed in Nob25 and Nob50 compared to other groups. Similarly, cleavage rate and cumulative blastocyst yield on Days 7 and 8 were significantly higher for Nob25 and Nob50 groups. Oocytes matured with 25 and 50 μM nobiletin showed a higher rate of migration of cortical granules and mitochondrial activity and a reduction in the ROS and GSH content in comparison with all other groups. This was linked to a modulation in the expression of genes related to metabolism (CYP51A1), communication (GJA1), apoptosis (BCL2), maturation (BMP15 and MAPK1), and oxidative stress (SOD2 and CLIC1). In conclusion, nobiletin offers a novel alternative for counteracting the effects of the increase in the production of ROS during IVM, improves oocyte nuclear and cytoplasmic maturation, and subsequent embryo development and quality in cattle.
Collapse
|
20
|
Effect of crocetin added to IVM medium for prepubertal goat oocytes on blastocyst outcomes after IVF, intracytoplasmic sperm injection and parthenogenetic activation. Theriogenology 2020; 155:70-76. [PMID: 32623132 DOI: 10.1016/j.theriogenology.2020.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
Crocetin is an active constituent of saffron recently used as antioxidant for embryo culture. The aim of this study was to test the effect of crocetin added in the in vitro maturation (IVM) of prepubertal goat oocytes on the embryo development after in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and parthenogenetic activation (PA). Cumulus-oocyte complexes (COCs) were released from slaughterhouse ovaries of prepubertal goats and in vitro matured in supplemented TCM 199 medium during 24 h without (control group) and with crocetin. In Experiment 1, we evaluated the effect of the IVM supplementation with 0 μM (control), 0.5 μM, 1 μM and 2 μM of crocetin on the blastocyst development after IVF. No significant differences were obtained on blastocyst formation among groups (12, 7, 10, 11%; respectively). Although the blastocyst total cell number was higher in 1 μM crocetin group (150.7 cells) compared to the control (105.5), 0.5 μM (116.2) and 2 μM (93.7) crocetin groups, no significant differences were detected. In experiment 2, we assessed the effect of 1 μM crocetin supplementation in the IVM medium on the oocyte GSH level, ROS level and mitochondrial activity. ROS was significantly higher in the control than in the crocetin group (P < 0.05), but no differences in GSH level and mitochondrial activity were observed. In experiment 3, we evaluated the effect of 1 μM crocetin on the blastocyst development of oocytes after ICSI and PA. No statistical differences were found on blastocyst rate or cell number. However, compared with control, crocetin groups led to higher cleavage (59 vs. 67%, respectively, P = 0.09) and blastocyst rates (19 vs. 12%, respectively; P = 0.12) after ICSI. Although crocetin reduced ROS levels in prepubertal goat oocytes, it did not have a significant effect on oocyte embryo developmental competence.
Collapse
|
21
|
IMD/ADM2 1-47, a factor that improves embryo quality. Theriogenology 2020; 146:1-13. [PMID: 32035360 DOI: 10.1016/j.theriogenology.2020.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Starting in vitro fertilization process with competent oocytes that may endure first cellular divisions is a critical step for obtaining an embryo. To obtain in vitro competent oocytes, culture conditions should emulate the in vivo microenvironment as close as possible. With the aim of improving the in vitro culture medium, the present study evaluated the IMD/ADM21-47 peptide as a factor that promotes oocyte competence and improves embryo quality in bovine systems. The culture supplemented with 153 μg/mL of IMD/ADM21-47 was correlated with the production of healthy oocytes in metaphase II (MII) stage in compacted cumulus-oocyte complexes (COC) with a decrease of BAX/BCL-2 to mRNA ratio and a reduction of late apoptosis by TUNEL in MII oocytes. In addition to this, treatment with IMD/ADM21-47 caused cAMPi level to be constant over time, and the cAMPi level kept increasing until 6 h. COC supplementation with 153 μg/mL of IMD/ADM21-47 increased the blastocyst production rate two-fold in comparison with control conditions. Only embryos from COC treatment with this peptide were capable of developing blastocysts in stage-6 grade I; compared with the control culture, it was the treatment with the greater number of blastocysts stage-5; these are characteristics of good quality blastocysts.
Collapse
|
22
|
Báez F, Camargo Á, Reyes AL, Márquez A, Paula-Lopes F, Viñoles C. Time-dependent effects of heat shock on the zona pellucida ultrastructure and in vitro developmental competence of bovine oocytes. Reprod Biol 2019; 19:195-203. [PMID: 31208934 DOI: 10.1016/j.repbio.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the effects of different exposure lenght to heat shock (HS) during in vitro maturation (IVM) on zona pellucida (ZP) ultrastructure and developmental competence of bovine oocytes. Cumulus-oocyte complexes (COCs) were matured in vitro (IVM) at 38.5 °C for 24 h (control group, CG), or incubated at 41 °C (HS) for 6 h (HS-6h), 12 h (HS-12h), 18 h (HS-18h), and 22h (HS-22h) followed by incubation at 38.5 °C to complete a full 24-h period of maturation. After IVM, oocytes were subjected to scanning electron microscopy (SEM) or in vitro fertilization and culture until the blastocyst stage. For heat-shocked oocytes, with exception of those in the HS-6h group, SEM examinations revealed that ZP surfaces were rough and characterized by a presence of spongy network. Oocytes from the HS-22h group displayed an increase in the number of pores, as well as a higher proportion of oocytes with amorphous ZPs. The proportion of oocytes that reached metaphase II (MII) stage decreased in all HS groups, regardless of the duration of exposure to 41 °C. These results provide evidence that HS during IVM for 12-22 h reduces the developmental competence of bovine oocytes, increasing the percentage of oocytes with abnormal chromosomal organization, and reducing fertilization and blastocysts formation rate. The effects of HS were more pronounced for the 22-h exposure group. The damage induced by HS on oocyte function clearly increased upon exposure to elevated temperature.
Collapse
Affiliation(s)
- Francisco Báez
- Instituto Superior de la Carne, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay.
| | - Álvaro Camargo
- Instituto Superior de Estudios Forestales, Sede Tacuarembó, UdelaR, Ruta 5, km 386, Tacuarembó, Uruguay
| | - Ana Laura Reyes
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Alejandro Márquez
- Servicio de Microscopía Electrónica, Unidad de Microscopía Electrónica de Barrido, Facultad de Ciencias, UdelaR, Iguá 4225 Esq. Mataojo, Montevideo, Uruguay
| | - Fabíola Paula-Lopes
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275 Jardim Eldorado, 09972-270, Diadema, SP, Brazil
| | - Carolina Viñoles
- Centro de Salud Reproductiva de Rumiantes en Sistemas Agroforestales, Casa de la Universidad de Cerro Largo, UdelaR, Ruta 26, km 408, Cerro Largo, Uruguay
| |
Collapse
|
23
|
Santos MVDO, Nascimento LE, Praxedes ÉA, Borges AA, Silva AR, Bertini LM, Pereira AF. Syzygium aromaticum essential oil supplementation during in vitro bovine oocyte maturation improves parthenogenetic embryonic development. Theriogenology 2019; 128:74-80. [DOI: 10.1016/j.theriogenology.2019.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/21/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
|
24
|
Alenezy ES, Barakat IAH, Al Musayeib NM. Effect of Wild Marjoram (<i>Origanum vulgare</i>) Plant Extracts on Capacitation of Sheep Spermatozoa <i>in Vitro</i>. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/abb.2019.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Perez-Rivero JJ, Lozada-Gallegos AR, Herrera-Barragán JA. Surgical Extraction of Viable Hen ( Gallus gallus domesticus) Follicles for In Vitro Fertilization. J Avian Med Surg 2018; 32:13-18. [PMID: 29698073 DOI: 10.1647/2016-231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Assisted reproduction techniques in birds have been developed for zootechnical purposes and have been adapted for use in conservation of wild bird species. To develop a technique for obtaining follicles in live hens, 5 Rhode Island red hens ( Gallus gallus domesticus) were anesthetized, and abdominal ultrasound was performed to confirm the presence of ovarian follicles. A left celiotomy then was performed to obtain follicles in different stages of maturation for in vitro fertilization. The follicles were located by digital exploration, then extracted by isolating each follicle with the index finger of each hand, holding it by the stigma, and then applying slight traction towards the exterior of the coelomic cavity until the follicle separated from the ovary. In total, 18 of 30 (60%) follicles obtained were suitable for in vitro fertilization, but only 3 (16%) were fertilized successfully. All birds recovered from the procedure and remained in good condition postoperatively. Perfecting assisted reproduction technique holds potential benefits for determining sex of embryos by blastomeres sexing, supporting the conservation efforts of avian species, and benefiting research areas, such as genetic and biopharmaceutical research.
Collapse
|
26
|
Bai M, Liu H, Xu K, Zou B, Yu R, Liu Y, Xing W, Du H, Li Y, Yin Y. Effects of dietary coated cysteamine hydrochloride on pork color in finishing pigs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1743-1750. [PMID: 28859217 DOI: 10.1002/jsfa.8647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Coated cysteamine hydrochloride (CC) was applied as a feed additive in animal production. The influence and the mechanisms of CC used as a feed additive in promoting meat quality in finishing pigs were investigated. RESULTS Dietary CC supplementation increased (P < 0.05) the a* and H* values and reduced (P < 0.05) the L* value in the longissimus dorsi muscles at 48 h postmortem (P < 0.05). The deoxymyoglobin content was enhanced (P < 0.05) and the metmyoglobin and malondialdehyde contents were reduced (P < 0.05) in pigs fed the dietary CC. Pigs fed a dietary CC of 0.035 g kg-1 had a lower cooking loss (P < 0.05) and a higher a* (24 h) value in the longissimus dorsi muscles than pigs on control treatment. The messenger RNA expression of superoxide dismutase 1 was upregulated (P < 0.05) in the longissimus dorsi. CONCLUSION Dietary supplementation with CC could improve antioxidant status and delay meat discoloration by improving glutathione levels and antioxidase activity after longer chill storage (for 48 h after slaughter). Dietary supplementation with CC at 0.035 g kg-1 may promote the stability of pork color by reducing oxidation. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Bai
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Breeding of Livestock and Poultry, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongnan Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Breeding of Livestock and Poultry, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd, Hangzhou, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, P.R. China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Kang Xu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Breeding of Livestock and Poultry, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd, Hangzhou, China
| | - Bingjie Zou
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd, Hangzhou, China
| | - Rong Yu
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd, Hangzhou, China
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis Davis, CA, USA
| | - Weigang Xing
- Shandong Newhope-Liuhe Group Company Academician Expert Workstation, Shandong Newhope-Liuhe Group Co., Ltd, Qingdao, China
| | - Haitao Du
- Shandong Newhope-Liuhe Group Co., Ltd, Weifang, China
| | - Yong Li
- Shandong Newhope-Liuhe Group Co., Ltd, Weifang, China
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Breeding of Livestock and Poultry, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd, Hangzhou, China
| |
Collapse
|
27
|
Delaying meiotic resumption during transportation of bovine cumulus–oocyte complexes: effects on development, apoptosis and caspases activity of in vitro-produced embryos. ZYGOTE 2017; 25:740-750. [DOI: 10.1017/s0967199417000636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThis study examined the effects of meiosis inhibition during bovine oocyte transportation on developmental competence and quality of produced embryos. The transportation medium was supplemented with: 100 μM butyrolactone I (BL), 500 μM IBMX + 100 μM forskolin (mSPOM), 100 μM milrinone (MR) or follicular fluid (bFF), and was carried out in a portable incubator for 6 h. Next, oocytes were in vitro matured (IVM) for 18 h, without the meiotic inhibitors, with the exception of mSPOM group, in which was added 20 μM cilostamide. The three control groups were IVM with 10% fetal calf serum (FCS) (Control Lab FCS) or 0.6% bovine serum albumin (BSA) (Control Lab BSA) in a CO2 in air incubator or in the portable incubator with 0.6% BSA (Control Transp BSA). Higher cleavage rates (P < 0.05) were obtained in the Control Lab FCS group (84.5 ± 5.3%) compared with the other groups (59.6 ± 3.4% to 70.9 ± 2.3%). Embryonic development was higher (P < 0.05) in the Control Lab FCS group (39.8 ± 4.7%) than in the Control Transp BSA (22.7 ± 3.4%) and MR (21.6 ± 2.3%) groups. However, they were similar (P > 0.05) to the other groups (23.6 ± 3.3% to 28.8 ± 2.7%). The total number of blastomeres was higher (P < 0.05) in the Control Lab FCS group (85.2 ± 5.6) than in Control Lab BSA (53.6 ± 2.9), Control Transp BSA (55.5 ± 4.4), BL (58.2 ± 3.0), mSPOM (57.9 ± 4.9) and MR (59.2 ± 3.9), but all these treatments did not differ (P > 0.05) from bFF (67.7 ± 4.2). No differences (P > 0.05) were found in apoptosis by the activity of caspases (139.0 ± 3.2 to 152.4 ± 6.5, expressed in fluorescence intensity) as well as the percentage of TUNEL-positive cells (12.3 ± 2.0% to 15.7 ± 1.7%). In conclusion, the transportation of oocytes over 6 h with BL, mSPOM or bFF enabled the acquisition of developmental competence at similar rates to the Control Lab FCS group.
Collapse
|
28
|
Mesalam A, Khan I, Lee KL, Song SH, Chowdhury M, Uddin Z, Park KH, Kong IK. 2-Methoxystypandrone improves in vitro -produced bovine embryo quality through inhibition of IKBKB. Theriogenology 2017; 99:10-20. [DOI: 10.1016/j.theriogenology.2017.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
|
29
|
Gustina S, Hasbi H, Karja NWK, Setiadi MA, Supriatna I. Ultrastructure changes in buffalo (Bubalus bubalis) oocytes before and after maturation in vitro with sericin. Anim Sci J 2017; 88:1911-1915. [PMID: 28722264 DOI: 10.1111/asj.12839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/05/2017] [Indexed: 11/29/2022]
Abstract
The aim of this research was to identify the changes in the cytoplasmic ultrastructure of immature and matured oocytes in buffalo (Bubalus bubalis). Oocytes were matured in vitro in tissue culture medium-199 with and without sericin, and then analyzed by light and transmission electron microscopy. The experiment result showed that the nuclear maturation rate of buffalo oocytes was significantly higher in the presence of sericin (80.6%) than without sericin (68.1%) (P < 0.05). The immature oocytes were characterized by cortical granule clusters in the ooplasm and the absence of perivitelline space (PVS). In contrast, the oocytes matured either with or without sericin showed the formation of PVS, erected microvilli, the migration of cortical granules to the cytoplasmic periphery, and the clear appearance of the mitochondria and vesicle in the oolemma. Interestingly, matured oocytes with sericin have smaller cortical granules than do immature oocytes (P < 0.05). In conclusion, supplementation of 0.05% sericin in the maturation medium can enhance the maturation rate of buffalo oocytes. Several cytoplasmic ultrastructures were relocated and modulated during the in vitro maturation process of buffalo oocytes: PVS development, cortical granules migration to periphery, and mitochondria and vesicles in the cortical region. The ultrastructure was similar between the groups with and without sericin.
Collapse
Affiliation(s)
- Sri Gustina
- Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia.,Division of Animal Science, Faculty of Animal Science and Fisheries, Sulawesi Barat University, Majene, Sulawesi Barat, Indonesia
| | - Hasbi Hasbi
- Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia.,Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
| | - Ni Wayan Kurniani Karja
- Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| | - Mohamad Agus Setiadi
- Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| | - Iman Supriatna
- Division of Reproduction and Obstetrics, Department of Veterinary Clinic, Reproduction and Pathology, Bogor Agricultural University, Bogor, Jawa Barat, Indonesia
| |
Collapse
|
30
|
Ascari IJ, Alves NG, Jasmin J, Lima RR, Quintão CCR, Oberlender G, Moraes EA, Camargo LSA. Addition of insulin-like growth factor I to the maturation medium of bovine oocytes subjected to heat shock: effects on the production of reactive oxygen species, mitochondrial activity and oocyte competence. Domest Anim Endocrinol 2017; 60:50-60. [PMID: 28445838 DOI: 10.1016/j.domaniend.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/30/2017] [Accepted: 03/17/2017] [Indexed: 11/26/2022]
Abstract
This study was performed to investigate the effects of insulin-like growth factor-I (IGF-I) addition to in vitro maturation (IVM) medium on apoptosis, mitochondrial membrane potential, ROS production, and developmental competence of bovine oocytes subjected to heat shock. Two temperatures (conventional: 24 h at 38.5°C, or heat shock: 12 h at 41°C followed by 12 h at 38.5°C) and 3 IGF-I concentrations (0, 25, and 100 ng/mL) were tested during IVM. The oocytes were then fertilized in vitro, and the presumptive zygotes were cultured until reaching the blastocyst stage. There was no interaction between temperature and IGF-I concentration for any variable evaluated (P > 0.05). The addition of IGF-I did not alter the proportion of nuclear maturation, TUNEL-positive oocytes and caspase-3 activity, or blastocyst proportion on Days 7 and 8 post-fertilization. Furthermore, the total number of cells and the number of cells in the inner cell mass (ICM) in the blastocyst were not altered (P > 0.05). However, IGF-I increased (P < 0.05) the mitochondrial membrane potential and the production of ROS in oocytes and decreased (P < 0.05) the proportion of apoptotic cells in the ICM in blastocysts. Heat shock increased (P < 0.05) the proportion of TUNEL-positive oocytes and ROS production and reduced (P < 0.05) the mitochondrial membrane potential. Moreover, heat shock increased (P < 0.05) the apoptosis proportion in the ICM cells. In conclusion, supplementing IVM medium with IGF-I may increase the mitochondrial membrane potential and ROS production in oocytes and decrease apoptosis in the ICM in blastocysts. Heat shock for 12 h compromised oocyte developmental competence and increased apoptosis within the ICM cells of the blastocysts.
Collapse
Affiliation(s)
- I J Ascari
- Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - N G Alves
- Department of Animal Science, Federal University of Lavras, Lavras, Minas Gerais, Brazil.
| | - J Jasmin
- NUMPEX-Bio, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Duque de Caxias, Rio de Janeiro, Brazil
| | - R R Lima
- Department of Exact Sciences, Federal University of Lavras, Lavras, Brazil
| | - C C R Quintão
- Brazilian Agricultural Research Corporation - Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - G Oberlender
- Federal Institute of Education, Science and Technology of South Minas Gerais, Muzambinho, Minas Gerais, Brazil
| | - E A Moraes
- School of Animal Science, Federal University of Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - L S A Camargo
- Brazilian Agricultural Research Corporation - Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
31
|
Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros FDA, Lopes FG, Leal CLV. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim 2017; 52:561-569. [DOI: 10.1111/rda.12946] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
- TC Sovernigo
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - PR Adona
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
- Centro de Ciência e Tecnologia de Leite e Derivados; Universidade Norte do Paraná; Londrina Paraná Brazil
- Laboratório de Reprodução Animal; Agropecuária Laffranchi; Tamarana Paraná Brazil
| | - PS Monzani
- Departamento de Medicina Veterinária; Universidade de São Paulo; Pirassununga São Paulo Brazil
| | - S Guemra
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
- Laboratório de Reprodução Animal; Agropecuária Laffranchi; Tamarana Paraná Brazil
| | - FDA Barros
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - FG Lopes
- Escola de Medicina Veterinária; Universidade Norte do Paraná; Arapongas Paraná Brazil
| | - CLV Leal
- Departamento de Medicina Veterinária; Universidade de São Paulo; Pirassununga São Paulo Brazil
| |
Collapse
|
32
|
Khazaei M, Aghaz F. Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2017; 11:63-70. [PMID: 28670422 PMCID: PMC5347452 DOI: 10.22074/ijfs.2017.4995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/09/2016] [Indexed: 11/04/2022]
Abstract
In vitro maturation (IVM) is emerging as a popular technology at the forefront of fertility treatment and preservation. However, standard in vitro culture (IVC) conditions usually increase reactive oxygen species (ROS), which have been implicated as one of the major causes for reduced embryonic development. It is well-known that higher than physiological levels of ROS trigger granulosa cell apoptosis and thereby reduce the transfer of nutrients and survival factors to oocytes, which leads to apoptosis. ROS are neutralized by an elaborate defense system that consists of enzymatic and non-enzymatic antioxidants. The balance between ROS levels and antioxidants within IVM media are important for maintenance of oocytes that develop to the blastocyst stage. The effects of antioxidant supplementation of IVM media have been studied in various mammalian species. Therefore, this article reviews and summarizes the effects of ROS on oocyte quality and the use of antioxidant supplementations for IVM, in addition to its effects on maturation rates and further embryo development.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Ambrogi M, Dall'Acqua PC, Rocha-Frigoni N, Leão B, Mingoti GZ. Transporting bovine oocytes in a medium supplemented with different macromolecules and antioxidants: Effects on nuclear and cytoplasmic maturation and embryonic development in vitro. Reprod Domest Anim 2017; 52:409-421. [PMID: 28120355 DOI: 10.1111/rda.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/04/2016] [Indexed: 11/29/2022]
Abstract
We investigated whether supplementing the medium used to transport bovine oocytes with different macromolecules [foetal calf serum (FCS) or bovine serum albumin (BSA)] or a mixture of antioxidants (cysteine, cysteamine and catalase) affects their nuclear and cytoplasmic maturation and thereby affects their subsequent embryonic development and cryotolerance. Oocytes were transported for 6 hr in a portable incubator and then subjected to standard in vitro maturation (IVM) for 18 hr. The oocytes in the control groups were cultured (standard IVM) for 24 hr in medium containing 10% FCS (Control FCS) or 10% FCS and the antioxidant mixture (Control FCS+Antiox). The intracellular concentrations of reactive oxygen species (ROS) at the end of IVM period were lower in the oocytes subjected to simulated transport in the presence of a macromolecular supplement or the antioxidant mixture than that of the control group (FCS: 0.62 and BSA: 0.66 vs. Control FCS: 1.00, p < .05; and Transp: 0.58 and Transp Antiox: 0.70 vs. Control FCS: 1.00, p < .05). After IVM, the mitochondrial membrane potentials of the transported oocytes were lower than those of the non-transported oocytes (FCS: 0.41 and BSA: 0.57 vs. Control FCS: 1.00, p < .05; and Transp: 0.48 and Transp Antiox: 0.51 vs. Control FCS: 1.00 and Control Antiox: 0.84, p < .05). The blastocyst formation rates (36.9% average) and the re-expansion rates of vitrified-warmed blastocysts (53%, average) were unaffected (p > .05) by the treatments. In conclusion, supplementing the medium in which bovine oocytes are transported with antioxidants or different macromolecules did not affect their in vitro production of embryos or their cryotolerance.
Collapse
Affiliation(s)
- M Ambrogi
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Araçatuba, SP, Brazil.,Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - P C Dall'Acqua
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Araçatuba, SP, Brazil.,Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Nas Rocha-Frigoni
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Araçatuba, SP, Brazil.,Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - Bcs Leão
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Araçatuba, SP, Brazil.,Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| | - G Z Mingoti
- Laboratory of Physiology of Reproduction, School of Veterinary Medicine, Universidade Estadual Paulista (UNESP), Araçatuba, SP, Brazil.,Post-Graduation Program in Veterinary Medicine, School of Agrarian and Veterinarian Sciences, Department of Animal Reproduction, Universidade Estadual Paulista (UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|