1
|
Costa KA, Barbosa LMDR, Marques DBD, da Silva W, Camilo BS, de Souza Netto DL, Saraiva A, Guimarães JD, Guimarães SEF. Supplementation of l-arginine in pregnant gilts affects the protein abundance of DNMT1 in 35-day fetuses. Anim Reprod Sci 2024; 270:107574. [PMID: 39167962 DOI: 10.1016/j.anireprosci.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Maternal nutrition is one of the main environmental factors regulating gene expression during fetal development through epigenetic modifications. Some nutrients, such as the amino acid l-arginine, are added to maternal diets to modulate gene expression, improve the reproductive performance of females, and enhance conceptus development. This study investigated the hypothesis that supplementation of pregnant gilts with l-arginine regulates gene expression in conceptuses through epigenetic mechanisms. For this, fetal programming phenotypic markers, the expression of key epigenetic genes, and the abundance of DNA methylation proteins (DNMT3A and DNMT1) were evaluated in 25- and 35-day conceptuses from gilts supplemented (ARG) or not (CON) with 1.0 % l-arginine during early gestation. At 25 days, there were no significant differences in phenotypic markers between CON and ARG embryos (P > 0.05). Similarly, no differences were found between CON and ARG fetuses at 35 days (P > 0.05). Maternal supplementation with l-arginine did not influence the expression of the evaluated key epigenetic genes in pig embryos or fetuses, nor DNMT3A protein abundance (P > 0.05); on the other hand, DNMT1 protein abundance was lower in ARG fetuses (P = 0.002). It is concluded that supplementation of l-arginine in pregnant gilts affects epigenetic mechanisms, such as DNA methylation, in 35-day fetuses through regulation of DNMT1 levels. Further studies using transcriptomic and proteomic analysis could reveal additional epigenetic modifications in embryos and fetuses following maternal supplementation with l-arginine.
Collapse
Affiliation(s)
- Karine Assis Costa
- Department of Biology and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Ilha Solteira, SP 15385-088, Brazil.
| | | | | | - Walmir da Silva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - Breno Soares Camilo
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Alysson Saraiva
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Domingos Guimarães
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | |
Collapse
|
2
|
Cui W, Wang H, Li J, Lv D, Xu J, Liu M, Yin G. Sheep litter size heredity basis using genome-wide selective analysis. Reprod Domest Anim 2024; 59:e14689. [PMID: 39044628 DOI: 10.1111/rda.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size. Results revealed that a total of 34,065,017 single-nucleotide polymorphisms (SNPs) were identified from all sheep, and 65 candidate genes (CDGs) were pinpointed from the top 1% of interacted windows and SNPs between the pairwise fixation index (FST, >0.149543) and cross-population extended haplotype homozygosity (XP-EHH, >0.701551). A total of 41 CDGs (e.g. VRTN, EYA2 and MCPH1) were annotated to 576 GO terms, of which seven terms were directly linked to follicular and embryonic development (e.g. TBXT, BMPR1B, and BMP2). In addition, 73 KEGG pathways were enriched by 21 CDGs (e.g. ENTPD5, ABCD4 and RXFP2), mainly related to Hippo (TCF4, BMPR1B and BMP2), TGF-β (BMPR1B and BMP2), PI3K-Akt (ITGB4, IL4R and PPP2R5A) and Jak-STAT signalling pathways (IL20RA and IL4R). Notably, a series of CDGs was under strong selection in sheep with high litter size traits. These findings result could improve the comprehension of the genetic underpinnings of sheep litter size. Furthermore, it provides valuable CDGS for future molecular breeding.
Collapse
Affiliation(s)
- Weiguo Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hechuan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingchun Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongyu Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiayi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guoan Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Musson R, Gąsior Ł, Bisogno S, Ptak GE. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum Reprod Update 2022; 28:376-399. [PMID: 35021196 PMCID: PMC9071077 DOI: 10.1093/humupd/dmab046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included ‘DNA damage repair’, ‘gametes’, ‘sperm’, ‘oocyte’, ‘zygote’, ‘blastocyst’ and ‘embryo’. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.
Collapse
Affiliation(s)
- Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
4
|
Enhancing in vitro oocyte maturation competence and embryo development in farm animals: roles of vitamin-based antioxidants – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Oocyte/embryo in vitro culture is one of the most important assisted reproductive technologies used as a tool for maintaining genetic resources biodiversity and the inheritance of valuable genetic resources through generations. The success of such processes affects the final goal of the in vitro culture, getting viable and healthy offspring. In common in vitro oocyte maturation and/or embryo development techniques, the development of oocytes/embryos is carried out at 5% carbon dioxide and roughly 20% atmosphere-borne oxygen ratios in cell culture incubators due to their reduced cost in comparison with low atmospheric oxygen-tension incubators. These conditions are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles, as well as genetic material. The present review mainly focuses on the antioxidant roles of different vitamins on in vitro oocyte maturation competence and embryo development in farm animals. Because, the conditions of in vitro embryo production (IVEP) are usually accompanying by the emergence of reactive oxygen species (ROS), which can extremely damage cell membrane integrity and other vital cellular organelles as well as genetic material. The use of antioxidant agents may prevent the extreme augmentation of ROS generation and enhance in vitro matured oocyte competence and embryo development. Therefore, this review aimed to provide an updated outline of the impact of antioxidant vitamin (Vit) supplementations during in vitro maturation (IVM) and in vitro fertilization (IVF) on oocyte maturation and consequent embryo development, in various domestic animal species. Thus, the enrichment of the culture media with antioxidant agents may prevent and neutralize the extreme augmentation of ROS generation and enhance the in vitro embryo production (IVEP) outcomes.
Collapse
|
5
|
Souza-Fabjan JMG, Batista RITP, Correia LFL, Paramio MT, Fonseca JF, Freitas VJF, Mermillod P. In vitro production of small ruminant embryos: latest improvements and further research. Reprod Fertil Dev 2021; 33:31-54. [PMID: 38769678 DOI: 10.1071/rd20206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
This review presents the latest advances in and main obstacles to the application of invitro embryo production (IVEP) systems in small ruminants. This biotechnology is an extremely important tool for genetic improvement for livestock and is essential for the establishment of other biotechnologies, such as cloning and transgenesis. At present, the IVEP market is almost non-existent for small ruminants, in contrast with the trends observed in cattle. This is probably related to the lower added value of small ruminants, lower commercial demand and fewer qualified professionals interested in this area. Moreover, there are fewer research groups working on small ruminant IVEP than those working with cattle and pigs. The heterogeneity of oocytes collected from growing follicles in live females or from ovaries collected from abattoirs remains a challenge for IVEP dissemination in goats and sheep. Of note, although the logistics of oocyte collection from live small ruminant females are more complex than in the bovine, in general the IVEP outcomes, in terms of blastocyst production, are similar. We anticipate that after appropriate training and repeatable results, the commercial demand for small ruminant invitro -produced embryos may increase.
Collapse
Affiliation(s)
- Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil; and Corresponding author
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho, 64, Niterói-RJ, CEP 24230-340, Brazil
| | - Maria Teresa Paramio
- Departament de Ciencia Animal i dels Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | - Jeferson F Fonseca
- Embrapa Caprinos e Ovinos, Rodovia MG 133, km 42, Campo Experimental Coronel Pacheco, Coronel Pacheco-MG, CEP 36155-000, Brazil
| | - Vicente J F Freitas
- Laboratório de Fisiologia e Controle da Reprodução, Universidade Estadual do Ceará, Fortaleza-CE, CEP 60714-903, Brazil
| | - Pascal Mermillod
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
6
|
Effect of cyanocobalamin on oocyte maturation, in vitro fertilization, and embryo development in mice. ZYGOTE 2020; 29:161-168. [PMID: 33327975 DOI: 10.1017/s0967199420000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to investigate the effect of cyanocobalamin supplementation on in vitro maturation (IVM), in vitro fertilization (IVF), and subsequent embryonic development competence to the blastocyst stage, and in vitro development of mouse 2-cell embryos. Cumulus cells were prepared from mouse cumulus-oocyte complexes (COCs) and incubated for 24 h in an in vitro culture (IVC) medium that contained different concentrations of cyanocobalamin (100, 200, 300 or 500 pM). We collected 2-cell embryos from superovulated NMRI mice and cultured them in the same concentrations of cyanocobalamin (100, 200, 300 or 500 pM). After 42 h of IVM, we observed significantly increased oocyte maturation in the 200 pM cyanocobalamin-treated group compared with the control group (P < 0.0001). Mature oocytes cultured in 200 pM cyanocobalamin were fertilized and cultured in IVC medium with cyanocobalamin (100, 200, 300 or 500 pM) during early embryogenesis. The matured oocytes that were cultured in 200 pM cyanocobalamin had significantly higher 2-cell development rates compared with the control oocytes (P < 0.01). Embryos obtained from in vitro mature oocytes and in vivo fertilized oocytes that were cultured in 200 pM cyanocobalamin had significantly greater frequencies of development to the blastocyst stage and a significant reduction in 2-cell blocked and degenerated embryos compared with the control embryos (P < 0.0001). Embryos derived from oocytes fertilized in vivo with 200 pM cyanocobalamin had a higher percentage of blastocyst embryos compared with those derived from matured oocytes cultured in vitro (P < 0.0001). These finding demonstrated that the effects of cyanocobalamin on oocyte maturation, fertilization, and embryo development in mice depend on the concentration used in IVC medium.
Collapse
|
7
|
Effects of cobalamin on meiotic resumption and developmental competence of growing porcine oocytes. Theriogenology 2020; 154:24-30. [PMID: 32473446 DOI: 10.1016/j.theriogenology.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/13/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
This study was performed to explore the effects of cobalamin treatment during in vitro maturation (IVM) of porcine oocytes. Specifically, the effects of cobalamin exposure on nuclear and cytoplasmic maturation of oocytes, diameter, glutathione (GSH) and reactive oxygen species (ROS) levels of matured oocytes, as well as development and gene expression of porcine parthenogenetic and cloned embryos were assessed. Cumulus-oocyte complexes were exposed to 200 pM cobalamin for 22 h or incubated for 22 h without cobalamin (controls). The mean diameter of cobalamin-treated oocytes was greater than that of control oocytes (160.0 vs. 154.5 μm; p < 0.05). GSH level increased but ROS level decreased in the cobalamin-treated oocyte group. Parthenogenetic embryos derived from cobalamin-treated oocytes showed improved oocyte maturation (91.3% vs. 83.8%), cleavage (88.9% vs. 82.1%), and blastocyst formation (38.7% vs. 31.9%) rates compared with control embryos (p < 0.05). Similarly, cloned embryos derived from cobalamin-treated oocytes showed higher oocyte maturation (89.2% vs. 82.2%), cleavage (87.5% vs. 80.3%), and blastocyst formation (30.0% vs. 23.8%) rates than control embryos (p < 0.05). Furthermore, in parthenogenetic and cloned embryos, total cell number, inner cell mass (ICM), trophectoderm (TE) expression, and ICM: TE ratio were higher in the cobalamin-treated group compared to that in the control group (p < 0.05). Cloned embryos in the cobalamin-treated group showed higher mRNA expression levels of POU5F1, DPPA2, and NDP52IL than control group embryos. Together, these results demonstrate that cobalamin treatment during IVM improves the developmental competence of porcine oocytes by neutralizing the free radicals produced in the IVM medium.
Collapse
|
8
|
Cellular Mechanisms and Epigenetic Changes: Role of Nutrition in Livestock. Vet Clin North Am Food Anim Pract 2019; 35:249-263. [PMID: 31103179 DOI: 10.1016/j.cvfa.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the context of physiologic responses that determine the growth, development, and health status of livestock, the role of epigenetics and the underlying cellular mechanisms it affects remain to be fully elucidated. Although recent work has provided evidence that maternal dietary energy level, carbohydrate type, or intestinal supply of methyl donors can elicit molecular changes in tissues of the embryo, fetus, or neonate, there are few data linking epigenetics with biochemical and physiologic outcomes. Therefore, efforts linking the epigenome with physiologic and developmental outcomes offer exciting opportunities for discoveries that can impact efficiency of nutrient use and well-being of livestock.
Collapse
|