1
|
Modaresi J, Kadivar A, Esfandabadi NS, Khosravian P, Mohebbi A. Evaluation of the effect of sustained-release progesterone injection on the expression of interferon-related genes in repeat-breeder dairy cows. Vet Med Sci 2024; 10:e70005. [PMID: 39189842 PMCID: PMC11348510 DOI: 10.1002/vms3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Repeat-breeder cows repeatedly fail to conceive after at least three attempts and return to oestrus at apparently normal intervals. Repeat-breeder cows cause economic losses in dairy farms in different ways. OBJECTIVE In the present study, we investigated the effect of sustained-release progesterone injection in two different doses on the expression of interferon-related genes in repeat-breeder dairy cows. METHODS A total of 96 repeat-breeder primiparous and multiparous cows were assigned among three groups: control group, inseminated and do not receive progesterone treatment; P400 and P600 groups, inseminated and received a single-intramuscular injection of 400 and 600 mg slow-release progesterone 5 days after insemination, respectively. Blood sampling was carried out on Day 20 after AI for progesterone measurement and evaluation of gene expression for ISG15, MX1 and MX2 genes. RESULTS One injection of sustained-release progesterone increased the expression of ISG15, MX1 and MX2 genes with differences between two different progesterone concentrations. For all three genes, the level of gene expression was higher in progesterone-supplemented group than in control group, when P400 and P600 groups considered together. The level of MX2 gene expression was significantly higher in pregnant cows than non-pregnant cows. There was a significant positive correlation between expression level of all three genes and blood progesterone concentration. The expression level of ISG15 gene showed a significant positive correlation with MX1 and MX2 gene expression. CONCLUSION The use of this sustained-release progesterone is simple and can be used in repeat-breeder cows to improve fertility.
Collapse
Affiliation(s)
- Jahangir Modaresi
- Department of Clinical SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Ali Kadivar
- Department of Clinical SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
- Research Institute of Animal Embryo TechnologyShahrekord UniversityShahrekordIran
| | - Naser Shams Esfandabadi
- Department of Clinical SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
- Research Institute of Animal Embryo TechnologyShahrekord UniversityShahrekordIran
| | - Pegah Khosravian
- Medicinal Plants Research CenterBasic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | - Abdonnaser Mohebbi
- Department of Clinical SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| |
Collapse
|
2
|
Haque MH, Narayan S, Islam MS, Akter M, Hasan MM, Islam R, Rashid MB. A simple, inexpensive and portable on-farm test for pregnancy diagnosis and ovary status in cows via chemical analysis of urine. Biochem Biophys Res Commun 2023; 677:113-118. [PMID: 37572390 DOI: 10.1016/j.bbrc.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Ovary dysfunction causes an aberrant endocrine surge at various reproductive cycle stages, negatively impacting fertility and economic profit. Optimizing dairy cow performance requires determining ovarian status and detecting early pregnancy. Still, little to no information is available about the diagnosis of the ovarian condition using urine chemical analysis at the field level in Bangladesh. This study aimed to develop a simple, inexpensive and portable on-farm technique for pregnancy diagnosis and ovary status determination in cows via chemical urine analysis. Fifty reproductively healthy cows were recruited from different donor farms. Prior to artificial insemination (AI), all selected cows were placed in a single ovsynch program. TAI (timed artificial insemination) was carried out. Urine was routinely collected from Day 0-55 days at estrus cycle stages for routine chemical analysis using barium chloride (BaCl2), followed by commercially available protein strip tests. The developed techniques for pregnancy and ovary status diagnosis in cows were validated with rectal palpation (RP). Barium chloride (BaCl2) analysis of urine revealed white precipitation corresponding to a mature follicle in the ovary during estrus and colorless precipitation corresponding to the corpus luteum during the diestrus period. Positive pregnancy was indicated by the presence of a colorless precipitate in the BaCl2 test, and a protein value of less than 100 mg/dl was found in the protein strip test. The maximum accuracy (42/50, 84%) was observed between 25 and 35 days, as confirmed by RP. Perplexing results were seen 45-55 days after AI, between pregnancies and luteal cystic disease. In both cases, we discovered that the BaCl2 precipitation was colorless. However, the protein value in the context of luteal cystic disease was found to be higher than 100 mg/dl. The barium chloride test, followed by protein strip tests, is a simple and portable way to diagnose pregnancy and determine ovarian status in cows at the field level.
Collapse
Affiliation(s)
- Md Hakimul Haque
- Department of Veterinary and Animal Sciences, University of Rajshahi, Bangladesh
| | - Shamarendra Narayan
- Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md S Islam
- Department of Anatomy and Histology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Mousumi Akter
- Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md M Hasan
- Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Rakibul Islam
- Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Mohammad B Rashid
- Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
| |
Collapse
|
3
|
Pérez-Marín CC, Quintela LA. Current Insights in the Repeat Breeder Cow Syndrome. Animals (Basel) 2023; 13:2187. [PMID: 37443985 DOI: 10.3390/ani13132187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Cows can have difficulties becoming pregnant, and in certain cases, these reproductive failures do not have an evident cause. Furthermore, when these failures are repeated three or more times with estrous cycles of normal duration and in the absence of evident clinical signs, it is considered repeat breeder cow (RBC) syndrome. A substantive incidence of RBC syndrome has been reported all over the world, which severely affects the farm economy. This paper reviews those studies particularly focused on RBC syndrome from 2000 to 2023 but also includes consolidated information until this date. Hormonal imbalances, undetectable oviductal or uterine defects, or poor oocyte or embryo quality have been reported as causes of RBC syndrome, while subclinical endometritis has been considered a relevant causal agent. However, it is unresolved why this condition is recurrent in certain animals, despite the implementation of corrective management actions or treatments. Recent studies evaluate the putative role of certain genes, factors, hormones, or proteins in the pathogenesis of RBC syndrome. Numerous risk factors contribute to the appearance of this syndrome, and some of them could be mitigated to partially prevent this infertility, while others cannot be changed. Due to the complexity of this syndrome, it is important to increase knowledge about the mechanisms involved, develop new diagnostic tools to differentiate causal agents, and implement new treatments to restore fertility. There is consensus about the huge repercussions of this syndrome on farm profitability, but further studies are now needed to describe its economic impact.
Collapse
Affiliation(s)
- Carlos Carmelo Pérez-Marín
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, 14014 Cordoba, Spain
| | - Luis Angel Quintela
- Unit of Reproduction and Obstetrics, Department of Animal Pathology, Faculty of Veterinary Medicine, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
4
|
Hessock EA, Edwards JL, Schrick FN, Payton RR, Campagna SR, Pollock AB, Clark HM, Stokes AE, Klabnik JL, Hill KS, Roberts SR, Hinson MG, Moorey SE. Metabolite abundance in bovine preovulatory follicular fluid is influenced by follicle developmental progression post estrous onset in cattle. Front Cell Dev Biol 2023; 11:1156060. [PMID: 37215073 PMCID: PMC10196500 DOI: 10.3389/fcell.2023.1156060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Preovulatory follicle response to the luteinizing hormone (LH) surge leads to metabolic, molecular, and functional changes in the oocyte and somatic follicular cells from the onset of estrus to ovulation. Follicular fluid contains metabolites, miRNAs, proteins, and hormones that are byproducts of follicular metabolism and support cellular processes of oocyte, cumulus, and granulosa constituents. Numerous studies have highlighted the importance of follicular fluid composition to support fertility, but critical gaps exist toward understanding dynamic modifications in the follicular fluid metabolome from estrous onset to ovulation. The hypothesis was that abundance of follicular fluid metabolites is dependent on follicle progression post LH surge and variability in follicular fluid metabolome profiles indicate key processes required for preparation of the follicle and oocyte for optimal fertility. The objective was to generate preovulatory follicular fluid metabolome profiles and discern differences in the metabolome of preovulatory follicular fluid samples collected at onset of estrus, 11 h post estrous onset, and 18 h post estrous onset. Methods: Estrus was synchronized in non-lactating Jersey cows (n=40) and follicular fluid was collected immediately after the first observed standing mount (hr 0) or at approximately h 11 or 18 after the first standing mount. Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry was performed on preovulatory follicular fluid samples (n = 9 collected at hr 0, 9 at h 11, and 10 at h 18) and a multiple linear model was performed to determine if time post estrous onset impacted metabolite abundance. Results: Metabolites influenced by time post estrous onset were tested for enrichment in KEGG pathways. Ninety metabolites were identified in follicular fluid samples. Twenty metabolites differed in abundance among timepoints post estrous onset (p ≤ 0.05). Pathways corresponding to amino acid and energy metabolism were enriched with metabolites impacted by time post estrous onset (FDR ≤ 0.10). Discussion: Results from the current study indicate early response to the LH surge to increase bioavailability of amino acids and metabolites used by the cumulus and granulosa cells for energy production and shuttled into the oocyte to support meiotic maturation. Such metabolites may later be used by the ovulatory follicle for protein production.
Collapse
Affiliation(s)
- Emma A. Hessock
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - J. Lannett Edwards
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - F. Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Rebecca R. Payton
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Abigayle B. Pollock
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Hannah M. Clark
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Allyson E. Stokes
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica L. Klabnik
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Kennedy S. Hill
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Samantha R. Roberts
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Meredith G. Hinson
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Sarah E. Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Catalán J, Martínez-Rodero I, Yánez-Ortiz I, Mateo-Otero Y, Bragulat AF, Nolis P, Carluccio A, Yeste M, Miró J. Metabolic profiling of preovulatory follicular fluid in jennies. Res Vet Sci 2022; 153:127-136. [PMID: 36356420 DOI: 10.1016/j.rvsc.2022.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Follicular fluid is formed from the transudation of theca and granulosa cells in the growing follicular antrum. Its main function is to provide an optimal intrafollicular microenvironment to modulate oocyte maturation. The aim of this study was to determine the metabolomic profile of preovulatory follicular fluid (PFF) in jennies. For this purpose, PFF was collected from 10 follicles of five jennies in heat. Then, PFF samples were analysed by nuclear magnetic resonance (NMR) and heteronuclear single quantum correlation (2D 1H/13C HSQC). Our study revealed the presence of at least 27 metabolites in the PFF of jennies (including common amino acids, carboxylic acids, amino acid derivatives, alcohols, saccharides, fatty acids, and lactams): 3-hydroxybutyrate, acetate, alanine, betaine, citrate, creatine, creatine phosphate, creatinine, ethanol, formate, glucose, glutamine, glycerol, glycine, hippurate, isoleucine, lactate, leucine, lysine, methanol, phenylalanine, proline, pyruvate, threonine, tyrosine, valine, and τ-methylhistidine. The metabolites found here have an important role in the oocyte development and maturation, since the PFF surrounds the follicle and provides it with the needed nutrients. Our results indicate a unique metabolic profile of the jennies PFF, as it differs from those previously observed in the PFF of the mare, a phylogenetically close species that is taken as a reference for establishing reproductive biotechnology techniques in donkeys. The metabolites found here also differ from those described in the TCM-199 medium enriched with fetal bovine serum (FBS), which is the most used medium for in vitro oocyte maturation in equids. These differences would suggest that the established conditions for in vitro maturation used so far may not be suitable for donkeys. By providing the metabolic composition of jenny PFF, this study could help understand the physiology of oocyte maturation as a first step to establish in vitro reproductive techniques in this species.
Collapse
Affiliation(s)
- Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, IT-64100 Teramo, Italy
| | - Iris Martínez-Rodero
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Iván Yánez-Ortiz
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Ana Flores Bragulat
- Equine Production Laboratory, Faculty of Agronomy and Veterinary Medicine, National University of Río Cuarto, AR- X5800 Río Cuarto, Córdoba, Argentina
| | - Pau Nolis
- Nuclear Magnetic Resonance Facility, Autonomous University of Barcelona, Bellaterra, ES-08193 Cerdanyola del Vallès, Spain
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, IT-64100 Teramo, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain..
| | - Jordi Miró
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
6
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
7
|
Correlation between Pre-Ovulatory Follicle Diameter and Follicular Fluid Metabolome Profiles in Lactating Beef Cows. Metabolites 2021; 11:metabo11090623. [PMID: 34564438 PMCID: PMC8471867 DOI: 10.3390/metabo11090623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023] Open
Abstract
Induced ovulation of small pre-ovulatory follicles reduced pregnancy rates, embryo survival, day seven embryo quality, and successful embryo cleavage in beef cows undergoing fixed-time artificial insemination. RNA-sequencing of oocytes and associated cumulus cells collected from pre-ovulatory follicles 23 h after gonadotropin-releasing hormone (GnRH) administration to induce the pre-ovulatory gonadotropin surge suggested reduced capacity for glucose metabolism in cumulus cells of follicles ≤11.7 mm. We hypothesized that the follicular fluid metabolome influences metabolic capacity of the cumulus-oocyte complex and contributes to reduced embryo cleavage and quality grade observed following induced ovulation of small follicles. Therefore, we performed a study to determine the correlation between pre-ovulatory follicle diameter and follicular fluid metabolome profiles in lactating beef cows (Angus, n = 130). We synchronized the development of a pre-ovulatory follicle and collected the follicular contents approximately 20 h after GnRH administration. We then performed ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) metabolomic studies on 43 follicular fluid samples and identified 38 metabolites within pre-ovulatory follicles of increasing size. We detected 18 metabolites with a significant, positive correlation to follicle diameter. Individual and pathway enrichment analysis of significantly correlated metabolites suggest that altered glucose and amino acid metabolism likely contribute to reduced developmental competence of oocytes when small pre-ovulatory follicles undergo induced ovulation.
Collapse
|
8
|
Kafi M, Ghaemi M, Azari M, Mirzaei A, Azarkaman S, Torfi Y. Effects of Pre-ovulatory Follicular Fluid of Repeat Breeder Dairy Cows on Bovine Fertility Transcriptomic Markers and Oocytes Maturation and Fertilization Capacity. Front Vet Sci 2021; 8:670121. [PMID: 33969045 PMCID: PMC8102792 DOI: 10.3389/fvets.2021.670121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
The current study aimed to determine the effects of the preovulatory follicular fluid (FF) of normal heifer (NH) and repeat breeder cows with subclinical endometritis (SCE) or without (nSCE) on oocyte maturation (Experiment 1) and fertilization rates (Experiment 2). Moreover, the pattern of gene expression of cumulus oocyte-complexes was evaluated in Experiment 1. In Experiment 1, nuclear maturation in the nSCE group was higher, compared to that in the SCE group (P = 0.05). In addition, the oocyte nuclear maturation in the normal heifer was significantly higher, in comparison to that of SCE groups (P < 0.05). Furthermore, the mean percentage of normal oocyte fertilization was higher in the nSCE group, compared to that in the SCE group (P < 0.05). The expressions of growth differentiation factor, GDF9; steroidogenic acute regulatory, StAR and follicle-stimulating hormone receptor, FSHr in the NH group were significantly higher, compared to those in SCE and nSCE groups (P < 0.05). Moreover, the expressions of all genes in the nSCE group were not significant, in comparison to those in the SCE group (P > 0.05). The supplementation of oocyte maturation medium with FF from pre-ovulatory follicles of repeat breeder cows resulted in less oocyte maturation and cumulus cell expansion. In conclusion, the lower fertility in RB cows could be ascribed to the lower oocyte maturation rate and less expression of GDF9, StAR, and FSHr in the cumulus-oocyte complexes.
Collapse
Affiliation(s)
- Mojtaba Kafi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehran Ghaemi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Azari
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdolah Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Samad Azarkaman
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Yusof Torfi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Embryo Transfer as an Option to Improve Fertility in Repeat Breeder Dairy Cows. J Vet Res 2021; 65:231-237. [PMID: 34250309 PMCID: PMC8256464 DOI: 10.2478/jvetres-2021-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Repeat breeding is a serious reproductive disorder in dairy cattle. The causes of repeat breeding are multifactorial and there are two main mechanisms: failure of fertilisation or early embryo death, mainly due to poor quality of oocytes and an inadequate uterine environment. Many methods have been used to increase the pregnancy rate for repeat breeder cows, such as intrauterine infusion of antibacterial agents or antibiotics, hormonal treatments for oestrus synchronisation and induction of ovulation, and progesterone supplementation or induction of accessory corpus luteum; however, the results were inconsistent between studies. Embryo transfer (ET) has the capability to minimalise the effects of poor oocyte quality and unfavourable uterine environments on early embryo development during the first seven days after ovulation in repeat breeder cows, and several studies showed that ET significantly improved the pregnancy rate in this group of animals. Thus, ET can be considered an option to increase the conception rate in repeat breeder dairy cows.
Collapse
|
10
|
Azari M, Kafi M, Asaadi A, Pakniat Z, Abouhamzeh B. Bovine oocyte developmental competence and gene expression following co-culturing with ampullary cells: An experimental study. Int J Reprod Biomed 2021; 19:371-380. [PMID: 33997596 PMCID: PMC8106812 DOI: 10.18502/ijrm.v19i4.9063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/09/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background There is no sufficient information on the impact of bovine ampullary oviductal epithelial cells (BAOECs) on in vitro oocyte maturation competence and gene expression. Objective This study aimed to examine the oocyte developmental competence following co-culturing with a monolayer of fresh and frozen-thawed ampullary cells. Materials and Methods Bovine cumulus-oocyte complexes (COCs) were distributed into three groups: control group; where in COCs were cultured in cell-free media for 24 hr and FML and FTML groups in which the COCs were cultured in maturation media for 18 hr and then transferred into a media containing fresh and frozen-thawed BAOECs monolayer, respectively (BAOECs were extracted from the oviducts of slaughtered cattle and were then cultured freshly or frozen-thawed) for a further 6 hr. After 24 hr, the expanded COCs were evaluated for nuclear maturation, fertilization rate, and gene expression (GDF9, StAR, CASP3, and FSHr). Results Nuclear maturation rate in the FTML group was significantly higher than the control group (p = 0.02). The fertilization rate of FTML group was significantly higher than the control and FML groups (p = 0.05 and p = 0.03, respectively). In terms of gene expression, GDF9 were upregulated in the presence of the BAOECs during the last 6 hr of the in vitro maturation (p < 0.001). Furthermore, the expression of the StAR gene in the FTML group was higher than the other groups (p = 0.02). Conclusion Ampullary cells co-culturing (especially frozen-thawed cells) for in vitro maturation of bovine oocytes yields encourages the results and demonstrates the beneficial effect of co-culture on gene expression and developmental competence.
Collapse
Affiliation(s)
- Mehdi Azari
- Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mojtaba Kafi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Anise Asaadi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zohreh Pakniat
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Beheshteh Abouhamzeh
- Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Gonzalez Moreno C, Torres Luque A, Oliszewski R, Rosa RJ, Otero MC. Characterization of native Escherichia coli populations from bovine vagina of healthy heifers and cows with postpartum uterine disease. PLoS One 2020; 15:e0228294. [PMID: 32479536 PMCID: PMC7263596 DOI: 10.1371/journal.pone.0228294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Even though Escherichia coli are common bacteria of the bovine vaginal microbiota, they represent an important pathogen that causes diseases in the reproductive tract and subfertility. However, the actual endometrial virulence profile of E. coli is poorly understood. The present study aims to characterize the phylogenetic structure and virulence potential of native vaginal populations of E. coli from healthy heifers (H), and cows with postpartum uterine diseases (PUD), such as metritis/endometritis (MT) or repeat breeder cows (RB). To this end, the virulence repertoire of 97 E. coli isolates was genotypically and phenotypically assessed. Most of them were assigned to phylogenetic group A (74%), followed by B1 (17%) and D (9%); RB strains were significantly (p < 0.05) more represented by B1. Seven of the 15 evaluated virulence genes (VFG) were detected and the most prevalent were fimH (87%), agn43 (41%) and csgA (35%); while traT (27%), fyuA (11%), hlyA (5%) and kpsMT II (5%) were observed in a lower proportion. Particularly, fyuA was significantly higher (p < 0.05) in MT cows whereas csgA showed the same behavior in PUD animals (p < 0.05). When comparing H and PUD strains, these last ones were associated to positive expression of biofilm, fimbriae curli/cellulose and motility; yet RB strains did not show motility. Vaginal B1 E. coli populations, that possess VFG (fyuA and csgA) as well as the expression of motility, curli fimbriae/cellulose and biofilm, may represent risk factors for endometrial disorders; specifically, those that also, have kpsMT II may have a pathogenic potential for causing the RB syndrome. Future research focusing on the detection of these strains in the vaginal microbiota of cows with postpartum uterine diseases should be done since the control of their presence in vagina could reduce the risk that they access the uterus during the postpartum period.
Collapse
Affiliation(s)
- Candelaria Gonzalez Moreno
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, El Manantial, Tucumán, Argentina
| | - Andrea Torres Luque
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
| | - Rubén Oliszewski
- Laboratorio de Calidad de Lácteos (LaCaLac), Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán (UNT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), El Manantial, Tucumán, Argentina
| | - Ramiro J. Rosa
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, El Manantial, Tucumán, Argentina
| | - María C. Otero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Tucumán, Argentina
- Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Tucumán, Argentina
- * E-mail:
| |
Collapse
|
12
|
Argudo DE, Tenemaza MA, Merchán SL, Balvoa JA, Méndez MS, Soria ME, Galarza LR, Ayala LE, Hernández-Fonseca HJ, Perea MS, Perea FP. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology 2020; 155:232-239. [PMID: 32758994 DOI: 10.1016/j.theriogenology.2020.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/28/2020] [Accepted: 05/30/2020] [Indexed: 12/25/2022]
Abstract
Three experiments were conducted to determine influence of the bovine corpus luteum (CL) on morphometric and functional characteristics of oocytes, and subsequent embryonic development. Cumulus-oocyte complexes were aspirated from two types of cows: 1) with a CL in one ovary (CL+) and without a CL in the contralateral ovary (CL-), 2) and from cows without CL in either ovary (C). Intracellular activity of the enzyme glucose-6-phosphate dehydrogenase (G6PDH), oocyte diameter and thickness of the zona pellucida were determined (Experiment 1). Then, the rate of in vitro oocyte maturation for each ovarian category was evaluated and oocyte diameter and zona pellucida thickness were measured after maturation (Experiment 2). In Experiment 3, in vitro embryo production and cryotolerance were assessed. The oocyte diameter was greater (P < 0.01) and the zona pellucida was thinner in CL+ than in CL- (P > 0.05) or C (P = 0.0131) ovaries. Activity of G6PDH was lower in oocytes from CL+ than CL- (P < 0.01) and C (P = 0.0148) ovaries. Rate of oocyte maturation, oocyte diameter and thickness of the zona pellucida after maturation did not differ among groups. Rate of cleavage was greater in zygotes from CL+ than from CL- or C (P < 0.01); and CL+ ovaries produced more total embryos on day 7 (P < 0.05) and more blastocysts (P < 0.01) than CL- and C ovaries. Rate of expansion and hatching of day-7 vitrified-warmed blastocysts at 24 and 48 h of culture did not differ among groups. In conclusion, oocytes collected from CL+ ovaries were larger and metabolically more prepared to continue maturation than those from ovaries lacking a CL. Also, rates of cleavage and yield of blastocysts were greater for oocytes from CL+ ovaries than from CL- and C ovaries. These findings indicate that a CL influenced oocyte developmental competence and embryonic development, presumably through intraovarian interactions.
Collapse
Affiliation(s)
- Daniel E Argudo
- Unidad Académica de Ciencias Agropecuarias, Universidad Católica de Cuenca, Ecuador
| | - Milton A Tenemaza
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Shirley L Merchán
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - José A Balvoa
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Maria S Méndez
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Manuel E Soria
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Luis R Galarza
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Luis E Ayala
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | | | - Mariana S Perea
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Venezuela
| | - Fernando P Perea
- Departamento de Ciencias Agrarias, Universidad de Los Andes, Trujillo, Venezuela.
| |
Collapse
|
13
|
Kafi M, Ashrafi M, Azari M, Jandarroodi B, Abouhamzeh B, Asl AR. Niacin improves maturation and cryo-tolerance of bovine in vitro matured oocytes: An experimental study. Int J Reprod Biomed 2019; 17:621-628. [PMID: 31646256 PMCID: PMC6804331 DOI: 10.18502/ijrm.v17i9.5096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Background Nicotinic acid (niacin) is a broad-spectrum lipid-modifying agent that has potent antioxidant properties and reduces the production of lipid peroxidation. Objective The purpose of the present study was to investigate the maturation, embryo development and cryo-tolerance merit, and levels of malondialdehyde (MDA), total oxidant status, and total antioxidant capacity following the supplementation of bovine oocytes maturation medium with different concentrations of niacin. Materials and Methods Immature cumulus-oocyte complexes were cultured in tissue culture medium-199 maturation media supplemented with 0, 100, 200, and 400 µM niacin under a standard in vitro culture condition. After 24 hr of culture, the nuclear maturation rate was assessed. Then, two groups of immature cumulus-oocyte complexes were cultured in TCM-199 either with or without 400 µM niacin and evaluated for embryo development. Also, matured cumulus-oocyte complexes in both groups were frozen using a standard vitrification procedure. After vitrification, oocytes were warmed in two steps and evaluated for embryo development. In addition, the level of total antioxidant capacity, total oxidant status, and MDA were measured. Results The results indicated that although the treatment with 400 µM niacin increased in vitro nuclear maturation (87.6±5.3), it did not improved the embryo development to the blastocyst stage. Higher cleavage and blastocyst rates were observed in vitrified oocytes that were cultured with supplemented 400 µM niacin compared to the control group (without niacin) (53.6±2.7 and 10.6±1.6 vs. 46.2±4.1 and 6.3±2.4, respectively). Also, the addition of 400 μM niacin to the maturation media could decrease MDA levels after maturation. Conclusion Niacin could improve the quality of in vitro embryo production (IVP) embryos and tolerance of bovine oocytes to vitrification.
Collapse
Affiliation(s)
- Mojtaba Kafi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Mahboobeh Ashrafi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Mehdi Azari
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Borhan Jandarroodi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Beheshteh Abouhamzeh
- Department of Anatomical Sciences, School of Medicine, AJA University of Medical Sciences Tehran Iran
| | - Arash Rakhshi Asl
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University Shiraz Iran
| |
Collapse
|
14
|
Heidari M, Kafi M, Mirzaei A, Asaadi A, Mokhtari A. Effects of follicular fluid of preovulatory follicles of repeat breeder dairy cows with subclinical endometritis on oocyte developmental competence. Anim Reprod Sci 2019; 205:62-69. [PMID: 31005360 DOI: 10.1016/j.anireprosci.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aims of the present study were to determine the concentrations of lipopolysaccharide (LPS), hormonal progesterone, estradiol-17β, insulin growth factor (IGF-1) and magnesium in the serum and the preovulatory follicle follicular fluid (FF) in repeat breeder (RB) cows without (nSCE) or with subclinical endometritis (SCE), and further to examine the effects of this FF on developmental competence of cattle oocytes. In Experiment 1, 13 of 23 clinically healthy Holstein RB cows were identified (uterine PMNs) to have SCE. The cows were estrous synchronized, and 6-12 h after detection of standing estrus, FF and blood of the preovulatory follicles were collected. The mean (±SD) LPS (862.3 ± 148.1 compared with 1063.4 ± 262.8 EU/ml, P = 0.04) and estradiol-17β (188.9 ± 15.8 compared with 162.0 ± 31.5 ng/ml, P = 0.02) concentrations of FF was different between nSCE and SCE cows. In Experiment 2, FF of RB cows with relatively lesser (nSCE, n = 4) and greater (SCE, n = 4) percentages of uterine PMNs was separately added to the oocyte maturation medium for in vitro embryo production. Addition of FF from SCE cows to the oocyte maturation medium resulted in a lesser rate of development to the blastocyst stage than that of the nSCE cows (21.9 ± 1.8 compared with 27.8 ± 2.5%, P < 0.05). Results of the present study indicate greater FF LPS concentration may result in a lesser quality microenvironment milieu for the final stages of oocyte maturation in RB dairy cows with subclinical endometritis. In addition, supplementation of oocyte maturation medium with FF of preovulatory follicles from RB cows with subclinical endometritis resulted in a lesser potential of in vitro oocyte developmental competence.
Collapse
Affiliation(s)
- Mahdi Heidari
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mojtaba Kafi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdolah Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Aniseh Asaadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
15
|
Yaginuma H, Funeshima N, Tanikawa N, Miyamura M, Tsuchiya H, Noguchi T, Iwata H, Kuwayama T, Shirasuna K, Hamano S. Improvement of fertility in repeat breeder dairy cattle by embryo transfer following artificial insemination: possibility of interferon tau replenishment effect. J Reprod Dev 2019; 65:223-229. [PMID: 30745523 PMCID: PMC6584180 DOI: 10.1262/jrd.2018-121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Repeat breeder cattle do not become pregnant until after three or more breeding attempts; this represents a critical reproductive disorder. Embryo transfer (ET) following artificial
insemination (AI) in repeat breeder cattle reportedly improves pregnancy rate, leading to speculation that interferon tau (IFNT) is associated with this phenomenon. However, the reason why
the conception rate improves remains unknown. We investigated the effect of ET following AI on repeat breeder cattle in field tests, and determined whether adding an embryo affects the
maternal immune cells detected by interferon-stimulated genes (ISGs), marker genes of IFN response. In total, 1122 repeat breeder cattle were implanted with in vitro
fertilization (IVF) embryos after previous AI. ET following AI resulted in pregnancy rates of 46.9% in repeat breeder dairy cattle. In basic in vivo tests, to investigate
the effect of adding embryos, ISGs mRNA expression levels were significantly higher in the AI + ET group than in the AI + sham group (transfer of only embryonic cryopreservation solution).
Then, we examined the effect of cultured conditioned media (CM) of IVF embryos on splenic immune cells and Madin-Darby bovine kidney (MDBK) cells with stably introduced ISG15
promoter-reporter constructs. These cells exhibited a specific increase in ISG15 mRNA expression and promoter activity when treated with the CM of IVF embryos, suggesting that IVF embryos
have the potential to produce and release IFNT. In conclusion, ET following AI is beneficial for improving conception in repeat breeder cattle. Added embryos may produce and secrete IFNT,
resulting in the increased expression of ISGs.
Collapse
Affiliation(s)
- Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Nao Tanikawa
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Motoharu Miyamura
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Hideki Tsuchiya
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan
| | - Tatsuo Noguchi
- University Farm, Tokyo University of Agriculture, Shizuoka 418-0109, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Seizo Hamano
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo 135-0041, Japan.,Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Gunma 371-0121, Japan
| |
Collapse
|