1
|
Costa CB, da Silva NC, Silva AN, Pioltine EM, Dellaqua TT, Zangirolamo AF, Meirelles FV, Seneda MM, Nogueira MFG. Developmental and Molecular Effects of C-Type Natriuretic Peptide Supplementation in In Vitro Culture of Bovine Embryos. Int J Mol Sci 2024; 25:10938. [PMID: 39456721 PMCID: PMC11507445 DOI: 10.3390/ijms252010938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The use of C-type natriuretic peptide (CNP) in the interaction with the oocyte and in the temporary postponement of spontaneous meiosis resumption has already been well described. However, its action in pre-implantation developmental-stage embryos is yet to be understood. Thus, our study aimed to detect the presence of the canonical CNP receptor (natriuretic peptide receptor, NPR2) in germinal vesicle (GV)-, metaphase II (MII)-, presumptive zygote (PZ)-, morula (MO)-, and blastocyst (BL)-stage embryos and, later, to observe possible modulations on the embryos when co-cultured with CNP. In Experiment I, we detected and quantified NPR2 on the abovementioned embryo stages. Further, in Experiment II, we intended to test different concentrations (100, 200, or 400 nM of CNP) at different times of inclusion in the in vitro culture (IVC; inclusion from the beginning, i.e., day 1, or from day 5). In Experiment III, 400 nM of CNP was used on day 1 (D1) in the IVC, which was not demonstrated to be embryotoxic, and it showed potentially promising results in the blastocyst production rate when compared to the control. Thus, we analyzed the embryonic development rates of bovine embryos (D7) and hatching kinetics (D7, D8, and D9). Subsequently, morula and blastocyst were collected and evaluated for transcript abundance of their competence and quality (apoptosis, oxidative stress, proliferation, and differentiation) and lipid metabolism. Differences with probabilities less than p < 0.05, and/or fold change (FC) > 1.5, were considered significant. We demonstrate the presence of NPR2 until the blastocyst development stage, when there was a significant decrease in membrane receptors. There was no statistical difference in the production rate after co-culture with 400 nM CNP. However, when we evaluated the abundance of morula transcripts, there was an upregulated transcription in ADCY6 (p = 0.057) and downregulated transcripts in BMP15 (p = 0.013), ACAT1 (p = 0.040), and CASP3 (p = 0.082). In addition, there was a total of 12 transcriptions in morula that presented variation FC > 1.5. In blastocysts, the treatment with CNP induced upregulation in BID, CASP3, SOX2, and HSPA5 transcripts and downregulation in BDNF, NLRP5, ELOVL1, ELOVL4, IGFBP4, and FDX1 transcripts (FC > 1.5). Thus, our study identified and quantified the presence of NPR2 in bovine pre-implantation embryos. Furthermore, 400 nM of CNP in IVC, a concentration not previously described in the literature, modulated some transcripts related to embryonic metabolism, and this was not embryotoxic morphologically.
Collapse
Affiliation(s)
- Camila Bortoliero Costa
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, SP, Brazil
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Nathália Covre da Silva
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Amanda Nespolo Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo (USP), Pirassununga 13635-000, SP, Brazil
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, SP, Brazil
| | - Elisa Mariano Pioltine
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, SP, Brazil
| | - Thaisy Tino Dellaqua
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Amanda Fonseca Zangirolamo
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga 13635-000, SP, Brazil
| | - Marcelo Marcondes Seneda
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, University of Londrina (UEL), Londrina 86057-970, PR, Brazil
- National Institute of Science and Technology for Dairy Production Chain (INCT–LEITE), University of Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
- Department of Biological Sciences, School of Sciences, Humanities and Languages, São Paulo State University (UNESP), Assis 19806-900, SP, Brazil
| |
Collapse
|
2
|
Zhang Z, Jia Z. Pre-IVM with C-type natriuretic peptide promotes mitochondrial biogenesis of bovine oocytes via activation of CREB. Sci Rep 2024; 14:16260. [PMID: 39009622 PMCID: PMC11250819 DOI: 10.1038/s41598-024-67094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
The aim of this study was to evaluate the effects of C-type natriuretic peptide (CNP) treatment prior to in vitro maturation (IVM) on mitochondria biogenesis in bovine oocyte matured in vitro and explore the related causes. The results showed that treatment with CNP before IVM significantly improved mitochondrial content, elevated the expression of genes related to mitochondria biogenesis, and increased the protein levels of phosphorylation of cAMP-response element binding protein (p-CREB) in bovine oocytes following IVM. However, further studies revealed that treatment with CNP before IVM could not increased the protein levels of p-CREB in bovine oocytes when natriuretic peptide receptor 2 activities was inhibited using the relative specific inhibitor Gö6976. In addition, treatment with CNP before IVM could not improved mitochondrial content or elevated the expression of genes related to mitochondria biogenesis in bovine oocytes when CREB activities was abolished using the specific inhibitor 666-15. In summary, these results provide evidence that treatment of bovine oocytes with CNP before IVM promotes mitochondrial biogenesis in vitro, possibly by activating CREB.
Collapse
Affiliation(s)
- Zehua Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China
| | - Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China.
| |
Collapse
|
3
|
Pytel AT, Żyżyńska-Galeńska K, Gajewski Z, Papis K. Factors defining developmental competence of bovine oocytes collected for in vitro embryo production†. Biol Reprod 2024; 111:1-10. [PMID: 38662582 PMCID: PMC11525209 DOI: 10.1093/biolre/ioae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 07/16/2024] Open
Abstract
Despite the currently relatively low effectiveness of producing bovine embryos in vitro, there is a growing interest in applying this laboratory method in the field of reproduction. Many aspects of the procedure need to be improved. One of the main problems is the inferior developmental competence of in vitro matured oocytes that are collected using the ovum pick-up method. The mechanisms of oocyte capacitation and maturation, as well as the in vivo conditions in which they grow and mature, should be carefully analyzed. A deliberate application of the identified mechanisms and beneficial factors affecting the in vitro procedures seems to be essential for achieving higher developmental competence of the oocytes that are subjected to fertilization. The results may be improved by developing and employing a laboratory maturation protocol that corresponds with appropriate preparation of donors before the ovum pick-up, an optimized hormonal treatment program, the appropriate size of ovarian follicles at the time of aspiration, and a fine-tuned coasting period.
Collapse
Affiliation(s)
- Aleksandra Teresa Pytel
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Bovisvet Veterinary Practice of Reproduction and Cattle Diseases, Kosierady Wielkie 34A, 08-300 Sokołów Podlaski, Poland
| | - Krystyna Żyżyńska-Galeńska
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Zdzisław Gajewski
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
| | - Krzysztof Papis
- Center of Translational Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland
- nOvum Fertility Clinic, Bociania 13, 02-807 Warsaw, Poland
| |
Collapse
|
4
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
5
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
6
|
Song Y, Zhang N, Yue Y, Chen D, Chou C, An L, Cheng L, Zhang J, Tian J. Field outcomes of laparoscopic ovum pick-up combined with in vitro embryo production in sheep: Effects of long-acting recombinant ovine FSH pre-stimulation, collection frequency, and donor breed. Domest Anim Endocrinol 2024; 87:106826. [PMID: 38043389 DOI: 10.1016/j.domaniend.2023.106826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Laparoscopic ovum pick-up (LOPU) combined with in vitro embryo production (IVEP) is a technology platform that improves the utilization rate of the elite ewe's ovarian oocytes and increases the number of obtained offspring. This study aimed to evaluate the effects of FSH pre-stimulation, serial oocyte collection, and breed on LOPU-IVEP under field conditions. Donors were randomly assigned to five groups (group A: decreasing doses of pituitary FSH (p-FSH); group B: constant doses of p-FSH; group C: two doses of long-acting recombinant ovine FSH (ro-FSH); group D: single administration of a long-acting ro-FSH in; group E: no FSH stimulation). Oocyte yield following LOPU (average recovered oocytes: 20.9 ± 0.5; average viable oocytes: 17.2 ± 0.4) and oocyte developmental competence (average blastocysts: 7.0 ± 0.2) in group C were significantly better than these of group D and group E, and similar to these of groups A and B. Meanwhile, there were no differences in oocyte yield and developmental capacity using repeated LOPU session at 1-, 2-, and 3-month intervals (p > 0.05). Finally, we compared LOPU-IVEP outcomes among five sheep breeds. The results indicated that East Friesian × Chinese Mongolian crossbred sheep and purebred East Friesian sheep had the more recovered oocytes and viable oocytes compared with the Suffolk, Dorper, and Texel breeds, and average number of blastocysts in East Friesian × Chinese Mongolian sheep group was also highest among the groups (8.1 ±0.3, p < 0.05). In summary, the results of this study indicate long-acting ro-FSH pre-stimulation combined with 12 times LOPU sessions over one year maximizes embryo production of elite donor ewes under field conditions.
Collapse
Affiliation(s)
- Yukun Song
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Nan Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Yuan Yue
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dayong Chen
- Inner Mongolia Sino Sheep Technology Co. Ltd., Ulanqab, Inner Mongolia 011800, China
| | - Chunjuan Chou
- Inner Mongolia Sino Sheep Technology Co. Ltd., Ulanqab, Inner Mongolia 011800, China
| | - Lei An
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Cheng
- Xilingol Vocational College, Xilinhot, Inner Mongolia 026000, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| | - Jianhui Tian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Song Y, Zhang N, Zhang Y, Wang J, Lv Q, Zhang J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int J Mol Sci 2024; 25:910. [PMID: 38255985 PMCID: PMC10815039 DOI: 10.3390/ijms25020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.S.)
| |
Collapse
|
8
|
Tang Y, Cui J, Wang X, Yang Q, Yue Y, Gao C, Wang Y, Wang W, Zhang S, Tian J, Xi G, An L. "Meiosis arrester" C-natriuretic peptide directly stimulates oocyte mtDNA accumulation and is implicated in aging-associated oocyte mtDNA loss. FASEB J 2023; 37:e23295. [PMID: 37984844 DOI: 10.1096/fj.202300886r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.
Collapse
Affiliation(s)
- Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunxiao Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangyin Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lu J, Guo M, Wang X, Wang R, Xi G, An L, Tian J, Chu M. A Redesigned Method for CNP-Synchronized In Vitro Maturation Inhibits Oxidative Stress and Apoptosis in Cumulus-Oocyte Complexes and Improves the Developmental Potential of Porcine Oocytes. Genes (Basel) 2023; 14:1885. [PMID: 37895234 PMCID: PMC10606118 DOI: 10.3390/genes14101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
In vitro embryo production depends on high-quality oocytes. Compared with in vivo matured oocytes, in vitro oocytes undergo precocious meiotic resumption, thus compromising oocyte quality. C-type natriuretic peptide (CNP) is a follicular factor maintaining meiotic arrest. Thus, CNP-pretreatment has been widely used to improve the in vitro maturation (IVM) of oocytes in many species. However, the efficacy of this strategy has remained unsatisfactory in porcine oocytes. Here, by determining the functional concentration and dynamics of CNP in inhibiting spontaneous meiotic resumption, we improved the current IVM system of porcine oocytes. Our results indicate that although the beneficial effect of the CNP pre-IVM strategy is common among species, the detailed method may be largely divergent among them and needs to be redesigned specifically for each one. Focusing on the overlooked role of cumulus cells surrounding the oocytes, we also explore the mechanisms relevant to their beneficial effect. In addition to oocytes per se, the enhanced anti-apoptotic and anti-oxidative gene expression in cumulus cells may contribute considerably to improved oocyte quality. These findings not only emphasize the importance of screening the technical parameters of the CNP pre-IVM strategy for specific species, but also highlight the critical supporting role of cumulus cells in this promising strategy.
Collapse
Affiliation(s)
- Jinlun Lu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Min Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaodong Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Rui Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Guangyin Xi
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lei An
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianhui Tian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Meiqiang Chu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China
| |
Collapse
|
10
|
Zhang P, Yang B, Xu X, Zhang H, Feng X, Hao H, Du W, Zhu H, Li S, Yu W, Khan A, Umer S, Zhao X. Combination of CNP, MT and FLI during IVM Significantly Improved the Quality and Development Abilities of Bovine Oocytes and IVF-Derived Embryos. Antioxidants (Basel) 2023; 12:antiox12040897. [PMID: 37107273 PMCID: PMC10135536 DOI: 10.3390/antiox12040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Oocyte maturation is a critical step in the completion of female gametogenesis in the ovary; thus, for subsequent fertilization and embryogenesis. Vitrification of embryo also has been shown to be closely associated with oocyte maturation. To improve the quality and developmental potential of bovine oocytes derived from in vitro maturation (IVM), Pre-IVM with C-type natriuretic peptide (CNP), melatonin (MT) and in combination, IGF1, FGF2, LIF (FLI) were supplemented in the IVM medium. In this current study, we cultured bovine oocytes in Pre-IVM with CNP for 6 h before transferring them to the IVM medium supplemented with MT and FLI. The developmental potential of bovine oocytes was then investigated by measuring the reactive oxygen species (ROS), the intracellular glutathione (GSH) and ATP levels, the transzonal projections (TZP), the mitochondrial membrane potential (ΔΨm), cacline-AM, and the expression of related genes (cumulus cells (CCs), oocytes, blastocysts). The results revealed that oocytes treated with a combination of CNP, MT, and FLI had dramatically improved the percentage of oocytes developed to blastocyst, ATP content, GSH levels, TZP intensity, the ΔΨm, cacline-AM fluorescence intensity, and considerably reduced ROS levels of oocytes. Furthermore, the survival rate and the hatched rate after vitrification of the CNP+MT+FLI group were significantly higher than those other groups. Thus, we speculated that CNP+MT+FLI increases the IVM of bovine oocytes. In conclusion, our findings deepen our understanding and provide new perspectives on targeting the combination of CNP, MT and FLI to enhance the quality and developmental potential of bovine oocytes.
Collapse
Affiliation(s)
- Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xi Xu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Haisheng Hao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Huabin Zhu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China
| | - Adnan Khan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Saqib Umer
- Department of Theriogenology, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
11
|
Asimaki K, Vazakidou P, van Tol HTA, Oei CHY, Modder EA, van Duursen MBM, Gadella BM. Bovine In Vitro Oocyte Maturation and Embryo Production Used as a Model for Testing Endocrine Disrupting Chemicals Eliciting Female Reproductive Toxicity With Diethylstilbestrol as a Showcase Compound. FRONTIERS IN TOXICOLOGY 2022; 4:811285. [PMID: 35686045 PMCID: PMC9171015 DOI: 10.3389/ftox.2022.811285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) can interfere with normal hormonal action and regulation. Exposure of women to EDCs has been associated with adverse reproductive health outcomes. The assays currently used to identify EDCs that elicit female reproductive toxicity lack screening tests that address effects on the maturation of oocytes, a process that enables them to be fertilized and develop into embryos. Here, a screening method employing the bovine model of in vitro oocyte maturation and embryo production is described. Endpoints explored address important events in oocyte maturation and developmental competence acquisition. To test the method, the effects of the known human EDC diethylstilbestrol (DES; an estrogen receptor agonist) were evaluated in a range of concentrations (10–9 M, 10–7 M, 10–5 M). Bovine oocytes were exposed to DES during in vitro maturation (IVM) or embryos were exposed during in vitro embryo culture (IVC). The endpoints evaluated included nuclear maturation, mitochondrial redistribution, cumulus cell expansion, apoptosis, and steroidogenesis. DES-exposed oocytes were fertilized to record embryo cleavage and blastocyst rates to uncover effects on developmental competence. Similarly, the development of embryos exposed to DES during IVC was monitored to assess the impact on early embryo development. Exposure to 10–9 M or 10–7 M DES did not affect the endpoints addressing oocyte maturation or embryo development. However, there were considerable detrimental effects observed in oocytes exposed to 10–5 M DES. Specifically, compared to vehicle-treated oocytes, there was a statistically significant reduction in nuclear maturation (3% vs 84%), cumulus expansion (2.8-fold vs 3.6-fold) and blastocyst rate (3% vs 32%). Additionally, progesterone and pregnenolone concentrations measured in IVM culture media were increased. The screening method described here shows that bovine oocytes were sensitive to the action of this particular chemical (i.e., DES), albeit at high concentrations. In principle, this method provides a valuable tool to assess the oocyte maturation process and early embryo development that can be used for reproductive toxicity screening and possibly EDC identification. Further studies should include EDCs with different mechanisms of action and additional endpoints to further demonstrate the applicability of the bovine oocyte model for chemical risk assessment purposes and EDC identification.
Collapse
Affiliation(s)
- K. Asimaki
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: K. Asimaki,
| | - P. Vazakidou
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - H. T. A. van Tol
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - C. H. Y. Oei
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - E. A. Modder
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M. B. M. van Duursen
- Amsterdam Institute for Life and Environment, Section Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - B. M. Gadella
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci Rep 2022; 12:4243. [PMID: 35273320 PMCID: PMC8913792 DOI: 10.1038/s41598-022-08238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental competence of in vitro matured cumulus oocyte complexes (COCs) in conventional IVM (C.IVM) is lower than in vivo maturated COCs and is related to unsynchronized nuclear and cytoplasmic maturation. To overcome this dearth, COCs can be exposed to granulosa secreted factors in a two-step system. Therefore, in the first experiment, 1000 nM of C-type natriuretic peptide for 8 h was determined (CAPA), as the best time and concentration to retain oocytes in germinal vesicle stage. This condition, also reduces lipid droplets and increases the expression of ATGL and PLIN2 involved in lipolysis and lipogenesis, respectively. In the second experiment, maturation was stimulated with prostaglandin E2 and amphiregulin for 18 h (CAPA-IVM), and their optimal concentrations based on blastocyst formation rates through in vitro fertilization (IVF) were determined as 1 and 600 nM, respectively. In the third experiment, the in vitro and in vivo developmental competency of SCNT embryos in CAPA-IVM group were determined. Despite similar blastocyst formation rates in IVF and SCNT between CAPA-IVM and C.IVM, the quality of blastocysts were quality was higher in CAPA-IVM, which reflected itself, as higher ICM/TE ratio and also expression of NANOG in SCNT blastocysts. Pregnancy rate, live births rate and SCNT efficiency were not significant between CAPA-IVM and C.IVM groups. Therefore, CAPA-IVM can improve the developmental competency of SCNT derived embryos.
Collapse
|
13
|
Strączyńska P, Papis K, Morawiec E, Czerwiński M, Gajewski Z, Olejek A, Bednarska-Czerwińska A. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod Biol Endocrinol 2022; 20:37. [PMID: 35209923 PMCID: PMC8867761 DOI: 10.1186/s12958-022-00906-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/06/2022] [Indexed: 12/18/2022] Open
Abstract
In vitro fertilization (IVF) is currently one of the most effective methods of infertility treatment. An alternative to commonly used ovarian hyperstimulation can become extracorporeal maturation of oocytes (in vitro maturation; IVM). Fertilization and normal development of the embryo depends on the cytoplasmic, nuclear and genomic maturity of the oocyte. The microenvironment of the ovarian follicle and maternal signals, which mediate bidirectional communication between granulosa, cumulus and oocyte cells, influence the growth, maturation and acquisition of oocyte development capability. During oogenesis in mammals, the meiosis is inhibited in the oocyte at the prophase I of the meiotic division due to the high cAMP level. This level is maintained by the activity of C-type natriuretic peptide (CNP, NPPC) produced by granulosa cells. The CNP binds to the NPR2 receptor in cumulus cells and is responsible for the production of cyclic guanosine monophosphate (cGMP). The cGMP penetrating into the oocyte through gap junctions inhibits phosphodiesterase 3A (PDE3A), preventing cAMP hydrolysis responsible for low MPF activity. The LH surge during the reproductive cycle reduces the activity of the CNP/NPR2 complex, which results in a decrease in cGMP levels in cumulus cells and consequently in the oocyte. Reduced cGMP concentration unblocks the hydrolytic activity of PDE3A, which decreases cAMP level inside the oocyte. This leads to the activation of MPF and resumption of meiosis. The latest IVM methods called SPOM, NFSOM or CAPA IVM consist of two steps: prematuration and maturation itself. Taking into account the role of cAMP in inhibiting and then unblocking the maturation of oocytes, they have led to a significant progress in terms of the percentage of mature oocytes in vitro and the proportion of properly developed embryos in both animals and humans.
Collapse
Affiliation(s)
- Patrycja Strączyńska
- Department of Gynecology, Obstetrics and Oncological Gynecology in Bytom, Medical University of Silesia, Katowice, Poland
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- Gyncentrum Fertility Clinic, Katowice, Poland
| | - Krzysztof Papis
- Center for Translational Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
- nOvum Fertility Clinic, Warsaw, Poland.
| | - Emilia Morawiec
- Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Katowice, Poland
| | | | - Zdzisław Gajewski
- Center for Translational Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anita Olejek
- Department of Gynecology, Obstetrics and Oncological Gynecology in Bytom, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
14
|
Hao T, Xu X, Hao H, Du W, Pang Y, Zhao S, Zou H, Yang S, Zhu H, Yang Y, Zhao X. Melatonin improves the maturation and developmental ability of bovine oocytes by up-regulating GJA4 to enhance gap junction intercellular communication. Reprod Fertil Dev 2021; 33:760-771. [PMID: 34585659 DOI: 10.1071/rd21145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
Melatonin (MT) increases oocyte maturation by reducing reactive oxygen species level and enhancing oocyte antioxidant capacity. However, the mechanisms via which MT works are still poorly understood. In the present study, the effects of MT on the maturation rate and development ability of bovine oocytes were investigated. Then, the transcriptome of oocytes treated by MT was sequenced. Finally, the expression of gap junction protein alpha 4 (GJA4) protein and cAMP level were detected in bovine oocytes, and isoprenaline (enhancer of gap junctional intercellular communication (GJIC)) and heptanol (inhibitor of GJIC) were used to investigate the effect of MT on GJIC activity in bovine oocytes. Our results showed that MT significantly improved the maturation, developmental ability and mRNA expression of GJA4 of bovine oocytes. Meanwhile, MT significantly increased GJA4 protein level and cAMP level in bovine oocytes. In contrast to heptanol, both isoproterenol and MT significantly increased GJIC activity, nuclear maturation and the development ability of bovine oocytes. However, MT significantly restored the nuclear maturation and developmental ability of oocytes treated by heptanol. In conclusion, our results showed that MT improves the maturation and developmental ability of bovine oocytes by enhancing GJIC activity via up-regulating GJA4 protein expression in IVM progress.
Collapse
Affiliation(s)
- Tong Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xi Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Sha Yang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, PR China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
15
|
The mRNA-destabilizing protein Tristetraprolin targets "meiosis arrester" Nppc mRNA in mammalian preovulatory follicles. Proc Natl Acad Sci U S A 2021; 118:2018345118. [PMID: 34031239 DOI: 10.1073/pnas.2018345118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C (Nppc) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/Nppc In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3' UTR. Moreover, MGC-specific knockout of Zfp36, as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36/TTP expression through the EGFR-ERK1/2-dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.
Collapse
|
16
|
Jia Z, Yang X, Liu K. Treatment of cattle oocytes with C-type natriuretic peptide before in vitro maturation enhances oocyte mitochondrial function. Anim Reprod Sci 2020; 225:106685. [PMID: 33388612 DOI: 10.1016/j.anireprosci.2020.106685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The present study was conducted to evaluate the effects in vitro on oocyte mitochondrial function of C-type natriuretic peptide (CNP) when treatments were imposed before in vitro maturation (IVM). Immature oocytes were either directly matured in vitro for 24 h (Control, no pre-IVM), or cultured in basic medium not supplemented or supplemented with CNP (100 nM) (Control pre-IVM and CNP pre-IVM, respectively) for 6 h, followed by IVM for 24 h. The results indicated treatment with CNP before IVM affected patterns of distribution of mitochondria, increased the mitochondrial content, membrane potential, and decreased the ROS content in cattle oocytes before and after IVM. Furthermore, treatment of immature cattle oocytes with CNP before IVM induced marked increases in the relative abundance of mRNA transcripts and proteins related to mitochondria development and antioxidative defense mechanisms. Treatment with CNP before oocyte IVM also resulted in an enhanced relative abundance of sirtuin-1 (SIRT1) mRNA transcript in cattle oocytes. Taken together, these results provide evidence that treatment of cattle oocytes with CNP before IVM improved mitochondrial function and antioxidant defense mechanisms in cattle oocytes. Findings in the present study provide insights into the potential mechanisms by which CNP has positive effects on oocyte cytoplasmic organelles, specifically mitochondria.
Collapse
Affiliation(s)
- Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China.
| | - Xinyu Yang
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China
| | - Kai Liu
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, 028000, PR China; Inner Mongolia Engineering Technology Research Center for the Beef Cattle Disease Prevention and Control, Tongliao, Inner Mongolia, 028000, PR China
| |
Collapse
|
17
|
Jia Z, Wang X. Effects of C-type natriuretic peptide on meiotic arrest and developmental competence of bovine oocyte derived from small and medium follicles. Sci Rep 2020; 10:18213. [PMID: 33106527 PMCID: PMC7589481 DOI: 10.1038/s41598-020-75354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to evaluate the effects of C-type natriuretic peptide (CNP) on meiotic arrest and developmental competence of bovine oocyte derived from follicles of different sizes. Collected immature cumulus-oocyte complexes from small follicles (< 3 mm) and medium follicles (3–8 mm) were cultured for 6 h in basal medium supplementated without or with 200 nM CNP. We observed that CNP effectively sustained meiotic arrest at germinal vesicle stage in in vitro cultured bovine oocytes from follicles of different sizes. Moreover, CNP treatment significantly improved the levels of cGMP in both cumulus cells and oocytes, as well as the levels of cAMP in oocytes regardless of follicle size. Based on the above results, we tested the effect of a novel in vitro maturation (IVM) system based on CNP-pretreatment, including a pre-IVM phase for 6 h using 200 nM CNP, followed by a extended IVM phase for 28 h, on developmental competence of bovine oocyte derived from small follicles (< 3 mm) and medium follicles (3–8 mm) compared to standard IVM system. The results showed that athough the novel IVM system based on CNP-pretreatment enhanced the developmental potencial of oocytes obtained from large follicles, but had no effect on the developmental comptence of oocytes obtained from small follicles.
Collapse
Affiliation(s)
- Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China.
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia University for the Nationalities, 536 West Huolinhe Street, Tongliao, 028000, Inner Mongolia, People's Republic of China
| |
Collapse
|
18
|
Turhan A, Pereira MT, Schuler G, Bleul U, Kowalewski MP. Hypoxia-inducible factor (HIF1alpha) inhibition modulates cumulus cell function and affects bovine oocyte maturation in vitro†. Biol Reprod 2020; 104:479-491. [PMID: 33095229 PMCID: PMC7876663 DOI: 10.1093/biolre/ioaa196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Various metabolic and hormonal factors expressed in cumulus cells are positively correlated with the in vitro maturation (IVM) of oocytes. However, the role of hypoxia sensing both during maturation of cumulus–oocyte complexes (COCs) as well as during the resumption of meiosis remains uncertain. HIF1alpha plays major roles in cellular responses to hypoxia, and here we investigated its role during bovine COC maturation by assessing the expression of related genes in cumulus cells. COCs were divided into the following groups: immature (control), in vitro matured (IVM/control), or matured in the presence of a blocker of HIF1alpha activity (echinomycin, IVM/E). We found an inhibition of cumulus cell expansion in IVM/E, compared with the IVM/control. Transcript levels of several factors (n = 13) were assessed in cumulus cells. Decreased expression of HAS2, TNFAIP6, TMSB4, TMSB10, GATM, GLUT1, CX43, COX2, PTGES, and STAR was found in IVM/E (P < 0.05). Additionally, decreased protein levels were detected for STAR, HAS2, and PCNA (P < 0.05), while activated-Caspase 3 remained unaffected in IVM/E. Progesterone output decreased in IVM/E. The application of PX-478, another blocker of HIF1alpha expression, yielded identical results. Negative effects of HIF1alpha suppression were further observed in the significantly decreased oocyte maturation and blastocyst rates from COCs matured with echinomycin (P < 0.05) or PX-478 (P < 0.05). These results support the importance of HIF1alpha for COC maturation and subsequent embryo development. HIF1alpha is a multidirectional factor controlling intercellular communication within COCs, steroidogenic activity, and oocyte development rates, and exerting effects on blastocyst rates.
Collapse
Affiliation(s)
- Aslihan Turhan
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland.,Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| | - Gerhard Schuler
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University, Giessen, Germany
| | - Ulrich Bleul
- Department of Farm Animals, Clinic of Reproductive Medicine, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Vetsuisse Faculty, Institute of Veterinary Anatomy, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
19
|
Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci 2020; 103:11930-11944. [PMID: 33041033 DOI: 10.3168/jds.2020-19068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Once it enters the uterus at d 4 to 5 after ovulation, the preimplantation bovine embryo is controlled in its development by regulatory signaling molecules from the mother called embryokines. Here, several cell-signaling molecules whose genes are expressed in the endometrium during d 5 to 7 after estrus were tested for the ability to affect the competence of the embryo for further development and the characteristics of the resultant blastocysts. Molecules tested were C-natriuretic peptide (CNP), IL-8, bovine morphogenetic protein 4 (BMP-4), IL-6, and leukemia inhibitory factor (LIF). None of the cell-signaling molecules tested improved the competence of the embryo to become a blastocyst; in fact, BMP-4 decreased development. All molecules modified attributes of the blastocyst formed in culture. In particular, CNP increased the number of cells in the ICM, whereas IL-8 decreased inner cell mass cell numbers and tended to increase the proportion of blastocysts that were hatching or hatched. In addition, BMP-4 decreased the proportion of blastocysts that were hatching. Interleukin-6 and, to a lesser extent, LIF activated the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the inner cell mass, and LIF increased the percent of cells in the blastocyst that were positive for both NANOG and phosphorylated (activated) STAT3. In conclusion, our results indicate that CNP, IL-8, IL-6, LIF, and BMP-4 can modify embryonic development of the cow in a manner that affects characteristics of the resultant blastocyst. Further research is required to understand how these changes in characteristics of the blastocyst would affect competence of the embryo to establish and maintain pregnancy.
Collapse
Affiliation(s)
- Lei Sang
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, China
| | - W Ortiz
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - Y Xiao
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - E Estrada-Cortes
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910; Campo Experimental Centro Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, México 47600
| | - E A Jannaman
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910
| | - P J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville 32611-0910.
| |
Collapse
|
20
|
Pioltine EM, Machado MF, da Silveira JC, Fontes PK, Botigelli RC, Quaglio AEV, Costa CB, Nogueira MFG. Can extracellular vesicles from bovine ovarian follicular fluid modulate the in-vitro oocyte meiosis progression similarly to the CNP-NPR2 system? Theriogenology 2020; 157:210-217. [PMID: 32814248 DOI: 10.1016/j.theriogenology.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/28/2022]
Abstract
C-type natriuretic peptide (CNP) and its natriuretic peptide receptors subtype 2 (NPR2) are essential for the maintenance of oocyte meiotic arrest in different species. Extracellular vesicles (EVs) in bovine follicular fluid (FF) are important for cell communication within the ovarian follicle. This study investigated the involvement of EVs from FF of bovine ovarian follicles in the CNP-NPR2 system, first by analyzing the presence of CNP in the EV contents, followed by addition of EVs to in-vitro maturation (IVM) medium, to evaluate the effect on maintenance of oocyte meiosis arrest and improvements in in-vitro embryo production. As expected, CNP was observed in FF and granulosa cells from the ovarian follicles. To the best of our knowledge, this is the first time that CNP has been found in the EV contents. To evaluate the possible effect of EVs on the progression of oocyte meiosis, the IVM was performed under three conditions: CNP and EV supplementation and control condition. Both the CNP and EV treatments inhibited meiosis resumption in the oocyte within 9 h of IVM. CNP treatment increased cGMP levels in cumulus cells within 6 h of IVM compared to the control group, but the EV treatment did not. In contrast, the relative mRNA abundance of adenylate cyclase 3 and 9 (ADCY3 and ADCY9) was upregulated in oocytes after 6 h of IVM under EV treatment compared to the control group, but not under CNP treatment. Last, these treatments in the IVM medium had no significant effect on the in-vitro embryo production. In conclusion, we demonstrated the presence of endogenous CNP in bovine reproductive structures, especially in the EVs from the FF of antral follicles. The presence of CNP in the EVs suggests an important involvement of this cell-communication system in the CNP-NPR2 system. Therefore, we indeed observed that the EVs from FF can modulate the arrest of oocyte meiosis, acting similarly to the CNP-NPR2 system to block the oocyte in the GV state. However, the mechanism of each system might be different; the CNP-NPR2 system seems to be involved in modulating the cGMP levels, while the contents of EVs might be involved in modulating the cAMP levels.
Collapse
Affiliation(s)
- Elisa M Pioltine
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil.
| | - Mariana F Machado
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil
| | - Juliano C da Silveira
- University of São Paulo (USP), Faculty of Animal Science and Food Engineering, Department of Veterinary Medicine, Pirassununga, São Paulo, 13635-900, Brazil
| | - Patrícia K Fontes
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil
| | - Ramon C Botigelli
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil
| | - Ana Elisa V Quaglio
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil
| | - Camila B Costa
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil
| | - Marcelo F G Nogueira
- São Paulo State University (UNESP), Institute of Biosciences, Department of Pharmacology, Botucatu, São Paulo, 18618-689, Brazil; São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Department of Biological Sciences, Assis, São Paulo, 19806-900, Brazil
| |
Collapse
|
21
|
Xi G, Wang W, Fazlani SA, Yao F, Yang M, Hao J, An L, Tian J. C-type natriuretic peptide enhances mouse preantral follicle growth. Reproduction 2020; 157:445-455. [PMID: 30817314 DOI: 10.1530/rep-18-0470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/25/2019] [Indexed: 01/03/2023]
Abstract
Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.
Collapse
Affiliation(s)
- Guangyin Xi
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Sarfaraz A Fazlani
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China.,Lasbela University of Agriculture, Water and Marine Science, Lasbela, Balochistan, Pakistan
| | - Fusheng Yao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyao Yang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jing Hao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 2020; 15:e0229043. [PMID: 32182244 PMCID: PMC7077809 DOI: 10.1371/journal.pone.0229043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oocyte in vitro maturation can be improved by mimicking the intra-follicular environment. Oocyte, cumulus cells, granulosa cells, and circulating factors act as meiotic regulators in follicles and maintain oocyte in the meiotic phase until oocyte becomes competent and ready to be ovulated. In a randomized experimental design, an ovine model was used to optimize the standard in vitro maturation media by Granulosa secreted factors. At first, the development capacity of oocyte derived from medium (>4 to 6 mm) and small (2 to ≤4 mm) size follicles was determined. Differential gene expression of granulosa secreted factors and their receptors were compared between the cumulus cells of the two groups. Then, the best time and concentration for arresting oocytes at the germinal vesicle stage by natriuretic peptide type C (CNP) were determined by nuclear staining in both groups. Oocyte quality was further confirmed by calcein uptake and gene expression. The developmental competence of cumulus oocyte complexes derived from small size follicles that were cultured in the presence of CNP in combination with amphiregulin (AREG) and prostaglandin E2 (PGE2) for 24 h was determined. Finally, embryo quality was specified by assessing expressions of NANOG, SOX2, CDX2, OCT4, and TET1. The cumulus oocyte complexes derived from small size follicles had a lower capacity to form blastocyst in comparison with cumulus oocyte complexes derived from medium size follicles. Prostaglandin E receptor 2 and prostaglandin-endoperoxide synthase 2 had significantly lower expression in cumulus cells derived from small size follicles in comparison with cumulus cells derived from medium size follicles. Natriuretic peptide type C increased the percentage of cumulus oocyte complexes arresting at the germinal vesicle stage in both oocytes derived from medium and small follicles. Gap junction communication was also improved in the presence of natriuretic peptide type C. In oocytes derived from small size follicles; best blastocyst rates were achieved by sequential exposure of cumulus oocyte complexes in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)] and [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. Increased SOX2 expression was observed in [TCM+CNP (6 h), then cultured in TCM+AREG+PGE2 (18h)], while decreased OCT4 expression was observed in [TCM+CNP (6 h), then cultured in conventional IVM supplements+AREG+PGE2 (18h)]. It seems that the natriuretic peptide type C modulates meiotic progression, and oocyte development is probably mediated by amphiregulin and prostaglandin E2. These results may provide an alternative IVM method to optimize in vitro embryo production in sheep and subsequently for humans.
Collapse
|
23
|
Sakaguchi K, Nagano M. Follicle priming by FSH and pre-maturation culture to improve oocyte quality in vivo and in vitro. Theriogenology 2020; 150:122-129. [PMID: 32005509 DOI: 10.1016/j.theriogenology.2020.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 01/25/2023]
Abstract
Nowadays there is strong demand to produce embryos from premium quality cattle, and we can produce embryos using oocytes collected from living premium animals by ovum-pick up (OPU) followed by in vitro fertilization (IVF). However, the developmental competence of IVF oocytes to form blastocysts is variable. The developmental competence of oocytes depends on the size and stages of follicles, and follicle-stimulating hormone priming (FSH-priming) prior to OPU can promote follicular growth and improve the developmental competence of oocytes. Furthermore, following the induction of ovulation using an injection of luteinizing hormone or gonadotropin-releasing hormone after FSH-priming, we can collect in vivo matured oocytes from ovulatory follicles, which show higher developmental competence than oocytes matured in vitro. However, the conventional protocols for FSH-priming consist of multiple FSH injection for 3-4 days, which is stressful for the animal and labor-intensive for the veterinarian. In addition, these techniques cannot be applied to IVF of oocytes collected from bovine ovaries derived from slaughterhouses, which are important sources of oocytes. Here, we review previous research focused on FSH-priming, especially for collecting in vivo matured oocytes and a simplified method for superstimulation using a single injection of FSH. We also introduce the previous achievements using in vitro pre-maturation culture, which can improve the developmental competence of oocytes derived from non-stimulated animals.
Collapse
Affiliation(s)
- Kenichiro Sakaguchi
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Institute of Cell Biology, School of Biological Sciences, College of Science and Engineering, University of Edinburgh, The Hugh Robson Building, Edinburgh, EH8 9XD, UK.
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
24
|
Soto-Heras S, Menéndez-Blanco I, Catalá MG, Izquierdo D, Thompson JG, Paramio MT. Biphasic in vitro maturation with C-type natriuretic peptide enhances the developmental competence of juvenile-goat oocytes. PLoS One 2019; 14:e0221663. [PMID: 31442286 PMCID: PMC6707569 DOI: 10.1371/journal.pone.0221663] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
In vitro embryo production success in juvenile animals is compromised due to their intrinsic lower oocyte quality. Conventional in vitro maturation (IVM) impairs oocyte competence by inducing spontaneous meiotic resumption. A series of experiments were performed to determine if maintaining meiotic arrest during a pre-maturation culture phase (pre-IVM) prior to conventional IVM improves oocyte competence of juvenile-goat (2 months old) cumulus-oocyte complexes (COCs). In experiment 1, COCs were cultured with C-type natriuretic peptide (CNP; 0, 50, 100, 200 nM) for 6 and 8 h. Nuclear stage was assessed, revealing no differences in the incidence of germinal vesicle (GV) breakdown. In experiment 2, the same CNP concentrations were assessed plus 10 nM estradiol, the known upstream agonist activating expression of NPR2, the exclusive receptor of CNP. CNP (200 nM) plus estradiol increased the rate of oocytes at GV stage at 6 h compared to control group (74.7% vs 28.3%; P<0.05) with predominantly condensed chromatin configuration. In experiment 3, relative mRNA quantification revealed NPR2 expression was down-regulated after pre-IVM (6 h). In experiment 4, analysis of transzonal projections indicated that pre-IVM maintained cumulus-oocyte communication after oocyte recovery. For experiments 5 and 6, biphasic IVM (6 h pre-IVM with CNP and estradiol, plus 24 h IVM) and control IVM (24 h) were compared. Biphasic IVM increased intra-oocyte glutathione and decreased ROS, up-regulated DNA-methyltransferase 1 and pentraxin 3 expression and led to an increase in rate of blastocyst development compared to control group (30.2% vs 17.2%; P<0.05). In conclusion, a biphasic IVM, including a pre-IVM with CNP, maintains oocyte meiotic arrest for 6 h and enhances the embryo developmental competence of oocytes from juvenile goats.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Menéndez-Blanco
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria-Gracia Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jeremy G. Thompson
- Robinson Research Institute, School of Paedriatics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Davies Research Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
25
|
Soto-Heras S, Paramio MT, Thompson JG. Effect of pre-maturation with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte developmental competence in cattle. Anim Reprod Sci 2019; 202:49-57. [PMID: 30772104 DOI: 10.1016/j.anireprosci.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
In vitro embryo production depends on oocyte competence, which is acquired during folliculogenesis, involving cytoplasmic and nuclear processes. In vitro maturation (IVM) induces spontaneous resumption of meiosis, preventing full competence acquisition. The incorporation of a pre-IVM phase with supplementation with C-type natriuretic peptide (CNP) and 3-Isobutyl-1-methylxanthine (IBMX) was used with the aim of improving developmental competence of cattle oocytes. In a preliminary experiment, COCs were cultured with increasing CNP concentrations and nuclear stage assessment was performed. Supplementation with both 100 and 200 nM CNP resulted in more germinal vesicle (GV) arrest at 6 h of culture than those in the control group (79.3%, 76.4% and 59.2%, respectively). In a second experiment, use of 100 nM CNP plus 500 μM IBMX resulted in retention of more oocytes in the GV stage (92.0%) at 6 h of culture compared to supplementation with either CNP or IBMX alone (74.8% and 86.7%, respectively). A subsequent assessment of the effect of the pre-IVM system (6-h of culture with CNP plus IBMX), followed by 20-h of IVM, with comparison to the control at 24-h of IVM was performed. Blastocyst development rate was greater after the pre-IVM phase (45.1% compared with 34.5%). The inclusion of the pre-IVM phase also resulted in an enhanced mitochondrial activity in matured oocytes and sustained integrity of transzonal projections for longer after IVM. In conclusion, CNP and IBMX function synergistically to arrest meiosis in cattle oocytes during a pre-IVM phase, which improves cumulus-oocyte communication and embryo development.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Jeremy G Thompson
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
26
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
27
|
Hou Z, An L, Han J, Yuan Y, Chen D, Tian J. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish. J Anim Sci Biotechnol 2018; 9:90. [PMID: 30568797 PMCID: PMC6298008 DOI: 10.1186/s40104-018-0304-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Meat and milk production needs to increase ~ 70–80% relative to its current levels for satisfying the human needs in 2050. However, it is impossible to achieve such genetic gain by conventional animal breeding systems. Based on recent advances with regard to in vitro induction of germ cell from pluripotent stem cells, herein we propose a novel embryo-stem cell breeding system. Distinct from the conventional breeding system in farm animals that involves selecting and mating individuals, the novel breeding system completes breeding cycles from parental to offspring embryos directly by selecting and mating embryos in a dish. In comparison to the conventional dairy breeding scheme, this system can rapidly achieve 30–40 times more genetic gain by significantly shortening generation interval and enhancing selection intensity. However, several major obstacles must be overcome before we can fully use this system in livestock breeding, which include derivation and mantaince of pluripotent stem cells in domestic animals, as well as in vitro induction of primordial germ cells, and subsequent haploid gametes. Thus, we also discuss the potential efforts needed in solving the obstacles for application this novel system, and elaborate on their groundbreaking potential in livestock breeding. This novel system would provide a revolutionary animal breeding system by offering an unprecedented opportunity for meeting the fast-growing meat and milk demand of humans.
Collapse
Affiliation(s)
- Zhuocheng Hou
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyong Han
- 2State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ye Yuan
- 3Colorado Center for Reproductive Medicine, Denver, USA
| | - Dongbao Chen
- 4Department of Obstetrics and Gynecology, University of California Irvine, Irvine, USA
| | - Jianhui Tian
- 1Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Pang Y, Thomas P. Role of natriuretic peptide receptor 2-mediated signaling in meiotic arrest of zebrafish oocytes and its estrogen regulation through G protein-coupled estrogen receptor (Gper). Gen Comp Endocrinol 2018; 265:180-187. [PMID: 29574150 DOI: 10.1016/j.ygcen.2018.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022]
Abstract
Natriuretic peptide type C (NPPC) and its receptor, natriuretic peptide receptor 2 (NPR2), have essential roles in maintaining meiotic arrest of oocytes in several mammalian species. However, it is not known if a similar mechanism exists in non-mammalian vertebrates. Using zebrafish as a model, we show that Nppc is expressed in ovarian follicle cells, whereas Npr2 is mainly detected in oocytes. Treatment of intact and defolliculated oocytes with 100 nM NPPC for 6 h caused a large increase in cGMP concentrations, and a significant decrease in oocyte maturation (OM), an effect that was mimicked by treatment with 8-Br-cGMP. Treatment with E2 and G-1, the specific GPER agonist, also increased cGMP levels. Cyclic AMP levels were also increased by treatments with 8-Br-cGMP, E2 and G1. The estrogen upregulation of cAMP levels was blocked by co-treatment with AG1478, an inhibitor of EGFR activation. Gene expression of npr2, but not nppc, was significantly upregulated in intact oocytes by 6 h treatments with 20 nM E2 and G-1. Both cilostamide, a phosphodiesterase 3 (PDE3) inhibitor, and rolipram, a PDE4 inhibitor, significantly decreased OM of intact and defolliculated oocytes, and enhanced the inhibitory effects of E2 and G-1 on OM. These findings indicate the presence of a Nppc/Npr2/cGMP pathway maintaining meiotic arrest in zebrafish oocytes that is upregulated by estrogen activation of Gper. Collectively, the results suggest that Nppc through Npr2 cooperates with E2 through Gper in upregulation of cGMP levels to inhibit phosphodiesterase activity resulting in maintenance of oocyte meiotic arrest in zebrafish.
Collapse
Affiliation(s)
- Yefei Pang
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
29
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
30
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
31
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|