1
|
Gao X, He H, Zheng Q, Chen S, Wei Y, Zhang T, Wang Y, Wang B, Huang D, Zhang S, Zhang S, Zhai J. Protective effect of trehalose on sperm chromatin condensation failure and semen quality decline in BDE-209-exposed mice. Food Chem Toxicol 2024; 196:115168. [PMID: 39657870 DOI: 10.1016/j.fct.2024.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
BDE-209 exposure induced male reproductive toxicity with sperm quality decline. However, the role of autophagy in this was unclear. The purpose was to evaluate the protective effect and its potential mechanism of trehalose (Tre, autophagy inducer) on reproductive damage during spermiogenesis induced by BDE-209. We used 2% w/v Tre and 75 mg/kg/d BDE-209 cotreated mice for 42 days. GC-2 spd cells were cotreated with Tre, chloroquine (CQ, inhibition of autophagic flux), compound C (CC, AMPK inhibitor), and BDE-209. Tre intake significantly recovered decrease in sexual organ ratio and poor sperm quality in BDE-209-exposed mice. Supplementation with Tre rescued sperm head malformation by improving aberrant histone-protamine exchange in BDE-209-exposed mice. However, Tre intake couldn't restore the acrosome biogenesis. In addition, Tre supplementation improved testicular damage induced by BDE-209. BDE-209 blocked autophagic flux with increased P62 and LC3BⅡ/Ⅰ levels. Mechanistically, CQ treatment aggravated elevation of P62 and LC3BⅡ/Ⅰ levels induced by BDE-209, otherwise, CC and Tre treatments inhibited the rise in p-AMPK, p-ULK1, P62 and LC3BⅡ/Ⅰ levels induced by BDE-209. Tre supplementation improved reproductive injury in BDE-209-exposed mice by regulating autophagic flow via AMPK-ULK1 signaling pathways, which providing a new theoretical basis and possible therapeutic targets for male reproductive toxicity.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China; Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, 266033, China
| | - Qi Zheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Siju Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dake Huang
- Department of Microbiology and Parasitology, School of Basic Medicine, Anhui Medical University, 230032, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Jiang Q, Galvão MC, Thanh LP, Aboragah AA, Mauck J, Gionbelli MP, Alhidary IA, McCann JC, Loor JJ. Short-term feed restriction induces inflammation and an antioxidant response via cystathionine-β-synthase and glutathione peroxidases in ruminal epithelium from Angus steers. J Anim Sci 2024; 102:skae257. [PMID: 39215655 PMCID: PMC11465371 DOI: 10.1093/jas/skae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Decreased intake is induced by stressors such as parturition, transportation, dietary transitions, and disease. An important function of one-carbon metabolism (OCM) is to produce the antioxidant glutathione to help reduce oxidative stress. Although various components of OCM are expressed in the bovine rumen and small intestine, the relationship between reduced feed intake, OCM, and antioxidant mechanisms in gut tissues is unknown. This study aimed to assess alterations in immune and antioxidant pathways in ruminal epithelium due to acute feed restriction (FR). Seven group-housed ruminally cannulated Angus steers (663 ± 73 kg body weight, 2 yr old) had ad libitum access to a finishing diet (dry-rolled corn, corn silage, modified wet distiller's grains) during 15 d of a pre-FR period (PRE). Subsequently, steers were moved to a metabolism barn with tie stalls and individually fed at 25% of estimated intake in PRE for 3 d (FR period, FRP). This was followed by 15 d of recovery (POST) during which steers had ad libitum access to the same diet as in PRE and FRP. Plasma and ruminal tissue biopsies were collected during each period. Plasma free fatty acid and IL1-β concentrations were higher (P ≤ 0.03) in FRP than PRE or POST. The mRNA abundance of the proinflammatory genes tumor necrosis factor, toll-like receptor 2 (TLR2), and TLR4 in the ruminal epithelium peaked (P < 0.05) at FRP and remained higher at POST. These responses agreed with the higher (P < 0.05) abundance of phosphorylated (p)-MAPK (an inflammation activator) and p-EEF2 (translational repressor) in FRP than PRE and POST. Although ruminal glutathione peroxidase (GPX) enzyme activity did not increase at FRP compared with PRE and POST, protein abundance of GPX1 and GPX3 along with the antioxidant response regulator NFE2L2 were highest (P < 0.01), and the activity of cystathionine-beta synthase tended (P = 0.06) to be highest during FR. Although FR had minimal negative effects on tissue integrity-related genes (only filamin A was downregulated), it led to a systemic inflammatory response and triggered inflammation and antioxidant mechanisms within the ruminal epithelium. Thus, deploying anti-inflammatory and antioxidant mechanisms via molecules that feed into OCM (e.g., dietary methyl donors such as methionine, choline, betaine, and folate) could potentially counteract the stressors associated with FR.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Matheus C Galvão
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Lam Phuoc Thanh
- Faculty of Animal Sciences, Can Tho University, Ninh Kieu, Can Tho, Vietnam
| | - Ahmad A Aboragah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - John Mauck
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Ibrahim A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
3
|
Li G, Xu Y, Li Y, Chang D, Zhang P, Ma Z, Chen D, You Y, Huang X, Cai J. Qiangjing tablets ameliorate asthenozoospermia via mitochondrial ubiquitination and mitophagy mediated by LKB1/AMPK/ULK1 signaling. PHARMACEUTICAL BIOLOGY 2023; 61:271-280. [PMID: 36655371 PMCID: PMC9858429 DOI: 10.1080/13880209.2023.2168021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
CONTEXT Therapeutic effects of Qiangjing tablets (QJT) on sperm vitality and asthenozoospermia (AZS) have been confirmed. However, the mechanism of action remains unclear. OBJECTIVE This study investigates the effects of QJT on AZS and the underlying mechanism of action. MATERIALS AND METHODS Sixty Sprague-Dawley rats were randomly divided into six groups: Control, ORN (ornidazole; 200 mg/kg), ORN + QJT-low (0.17 g/mL), ORN + QJT-middle (0.33 g/mL), ORN + QJT-high (0.67 g/mL), and ORN + QJT + Radicicol (0.67 g/mL QJT and 20 mg/kg radicicol) groups. Pathological evaluation and analysis of mitophagy were conducted by H&E staining and transmission electron microscopy, respectively. Reactive oxygen species were detected by flow cytometry. Protein expression was determined by Western blotting. RESULTS QJT significantly improved ORN-treated sperm motility and kinematic parameters, as well as the pathological symptoms of testicular and epididymal tissues. In particular, QJT mitigated impaired mitochondrial morphology, and increased the PHB, Beclin-1, LC3-II protein, and ROS levels (p < 0.05), and reduced the protein expression levels of LC3-I and p62 (p < 0.05). Mechanistically, QJT antagonized the downregulation of SCF and Parkin protein levels (p < 0.05). Furthermore, QJT significantly increased the protein expressions levels of LKB1, AMPKα, p-AMPKα, ULK1 and p-ULK1 (p < 0.05). The ameliorative effect of QJT on pathological manifestations, mitochondrial morphology, and the expressions of mitophagy and mitochondrial ubiquitination-related proteins was counteracted by radicicol. DISCUSSION AND CONCLUSIONS QJT improved AZS via mitochondrial ubiquitination and mitophagy mediated by the LKB1/AMPK/ULK1 signaling pathway. Our study provides a theoretical basis for the treatment of AZS and male infertility.
Collapse
Affiliation(s)
- Guangsen Li
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjie Xu
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingxi Li
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Degui Chang
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peihai Zhang
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziyang Ma
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di’ang Chen
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodong You
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaopeng Huang
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Cai
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Yan Q, Zhang Y, Wang Q, Yuan L. Autophagy: A Double-Edged Sword in Male Reproduction. Int J Mol Sci 2022; 23:ijms232315273. [PMID: 36499597 PMCID: PMC9741305 DOI: 10.3390/ijms232315273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Autophagy, an evolutionarily conserved cell reprogramming mechanism, exists in all eukaryotic organisms. It is a fundamental and vital degradation/recycling pathway that removes undesirable components, such as cytoplasmic organelles, misfolded proteins, viruses, and intracellular bacteria, to provide energy and essential materials for organisms. The success of male reproduction depends on healthy testes, which are mainly composed of seminiferous tubules and mesenchyme. Seminiferous tubules are composed of Sertoli cells (SCs) and various germ cells, and the main functional part of mesenchyme are Leydig cells (LCs). In recent years, a large amount of evidence has confirmed that autophagy is active in many cellular events associated with the testes. Autophagy is not only important for testicular spermatogenesis, but is also an essential regulatory mechanism for the ectoplasmic specialization (ES) integrity of SCs, as well as for the normal function of the blood-testes barrier (BTB). At the same time, it is active in LCs and is crucial for steroid production and for maintaining testosterone levels. In this review, we expanded upon the narration regarding the composition of the testes; summarized the regulation and molecular mechanism of autophagy in SCs, germ cells, and LCs; and concluded the roles of autophagy in the process of spermatogenesis and testicular endocrinology. Through integrating the latest summaries and advances, we discuss how the role of autophagy is a double-edged sword in the testes and may provide insight for future studies and explorations on autophagy in male reproduction.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence: (Q.W.); (L.Y.)
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Correspondence: (Q.W.); (L.Y.)
| |
Collapse
|
5
|
Wang S, Hu F, Diao Q, Li S, Tu Y, Bi Y. Comparison of Growth Performance, Immunity, Antioxidant Capacity, and Liver Transcriptome of Calves between Whole Milk and Plant Protein-Based Milk Replacer under the Same Energy and Protein Levels. Antioxidants (Basel) 2022; 11:antiox11020270. [PMID: 35204153 PMCID: PMC8868243 DOI: 10.3390/antiox11020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/29/2022] Open
Abstract
High-cost milk proteins necessitate cheaper, effective milk replacer alternatives, such as plant proteins. To examine plant protein-based milk replacer’s impact on growth performance, serum immune and antioxidant indicators, and liver transcriptome profiles in suckling calves. We assigned 28 newborn Holstein calves (41.60 ± 3.67 kg of body weight at birth) to milk (M) or milk replacer (MR) and starter diets pre-weaning (0–70 d of age) but with the same starter diet post-weaning (71–98 d of age). During the pre-weaning period, compared with the M group, MR group had significantly lower body weight, withers height, heart girth, average daily gain, feed efficiency, serum immunoglobulin (Ig) M concentration, superoxide dismutase concentration, and total antioxidant capacity; whereas they had significantly higher serum aspartate aminotransferase concentration. During the post-weaning period, MR group presented significantly higher average daily gain, alanine transaminase, aspartate aminotransferase, and malonaldehyde concentrations; whereas they had significantly lower serum IgA and IgM concentrations than the M group. Transcriptome analysis revealed 1, 120 and 293 differentially expressed genes (DEGs; MR vs. M group) in the calves from pre- and post-weaning periods, respectively. The DEGs related to xenobiotic and lipid metabolism and those related to energy metabolism, immune function, and mineral metabolism were up- and downregulated, respectively, during the pre-weaning period; during the post-weaning period, the DEGs related to osteoclast differentiation and metabolic pathways showed difference. In this study, compared with M group, MR group had the same growth performance during the overall experimental period; however, MR affected the hepatic metabolism, immune, and antioxidant function of calves. These observations can facilitate future studies on milk replacers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengming Hu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.T.); (Y.B.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (F.H.); (Q.D.); (S.L.)
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.T.); (Y.B.)
| |
Collapse
|
6
|
Ge Y, Zhou M, Chen C, Wu X, Wang X. Role of AMPK mediated pathways in autophagy and aging. Biochimie 2021; 195:100-113. [PMID: 34838647 DOI: 10.1016/j.biochi.2021.11.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023]
Abstract
AMPK is an important kinase regulating energy homeostasis and also a key protein involved in a variety of signal transduction pathways. It plays a vitally regulatory role in cellular senescence. Activation of AMPK can delay or block the aging process, which is of great significance in the treatment of cardiovascular diseases and other aging related diseases, and provides a potential target for new indications such as Alzheimer's disease. Therefore, AMPK signaling pathway plays an important role in aging research. The in-depth study of AMPK activators will provide more new directions for the treatment of age-related maladies and the development of innovative drugs. Autophagy is a process that engulfs and degrades own cytoplasm or organelles. Thereby, meeting the metabolic demands and updating certain organelles of the cell has become a hotspot in the field of anti-aging in recent years. AMPK plays an important role between autophagy and senescence. In our review, the relationship among AMPK signaling, autophagy and aging will be clarified through the interaction between AMPK and mTOR, ULK1, FOXO, p53, SIRT1, and NF -κB.
Collapse
Affiliation(s)
- Yuchen Ge
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Cui Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaojian Wu
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi Province, 530007, China.
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan, 671000, China.
| |
Collapse
|
7
|
Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway. Theriogenology 2021; 173:83-92. [PMID: 34352672 DOI: 10.1016/j.theriogenology.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/19/2023]
Abstract
Energy balance is essential for normal reproduction of ram. However, the effect of energy restriction (ER) on reactive oxygen species (ROS) of sheep Leydig cells (LCs) and the rescuee methods are still unclear. To investigate the in vitro effect of melatonin on cellular ROS in fER-treated sheep LCs and explore the underlying mechanism, Hu sheep LCs were restricted energy using no serum culture medium and resaved with 10 ng/ml melatonin, respectively. The results showed that ER significantly increased MDA level, while decreased CAT, GHS-px expression and ΔΨm (p < 0.05). Meanwhile, ER decreased testosterone concentration and cell proliferation rate (p < 0.05). And the expression of testosterone synthesis-related enzymes was also down-regulated by ER (p < 0.05). Furthermore, we revealed that melatonin reversed the defective phenotypes in ER-treated LCs via Sirt1/Sod2 pathway. The interference of Sirt1 abolished the melatonin-mediated improvement of cellular ROS and testosterone secretion. Taken together, our study firstly indicated that melatonin could alleviate the excessive ROS accumulation and promote testosterone biosynthesis in ER-treated sheep LCs via the activation of Sirt1/Sod2 pathway.
Collapse
|
8
|
Hou J, Zhao L, Tang H, He X, Ye G, Shi F, Kang M, Chen H, Li Y. Silver Nanoparticles Induced Oxidative Stress and Mitochondrial Injuries Mediated Autophagy in HC11 Cells Through Akt/AMPK/mTOR Pathway. Biol Trace Elem Res 2021; 199:1062-1073. [PMID: 32666434 DOI: 10.1007/s12011-020-02212-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in industrial products, and they have good antibacterial properties, with potential for prevention and treatment of cow mastitis. However, concerns exist about the cytotoxicity of AgNPs. Thus, we have studied the role of autophagy in AgNP-induced cytotoxicity in mouse HC11 mammary epithelium cells. We found that AgNPs injured HC11 cells, with release of lactate dehydrogenase (LDH). AgNPs also induced autophagy in HC11 cells, which was associated with oxidative stress, as indicated by increased reactive oxygen species (ROS) and increased expression of hemoxygenase-1(HO-1) and Nrf2. Mitochondria were altered by AgNPs: mitochondrial membrane potential (MMP) was decreased and the expression of PINK1 and Parkin was increased. AgNPs also increased the expression of p-AMPK and decreased the expression of p-Akt and p-mTOR. The addition of 3-methyl adenine inhibited autophagy and enhanced the cytotoxicity of AgNPs, indicating that autophagy is protective against AgNP-induced cell death. In summary, AgNPs induced protective autophagy in HC11 cells via the Akt/AMPK/mTOR pathway, associated with cellular oxidative stress and mitochondrial alterations. Our research confirms that AgNPs may damage the breast tissue in clinical applications and should be used with caution. Further research is necessary to clarify whether the damage caused by AgNPs will affect the lactation function of the mammary glands and possible residues in milk.
Collapse
Affiliation(s)
- Jin Hou
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Xiaoli He
- College of Science, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Fei Shi
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Min Kang
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Helin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Arab HH, Al-Shorbagy MY, Saad MA. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem Biol Interact 2021; 335:109368. [PMID: 33412153 DOI: 10.1016/j.cbi.2021.109368] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Dapagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has featured marked anti-inflammatory effects in murine models of myocardial infarction, renal injury, and neuroinflammation. Yet, its potential impact on the pathogenesis of inflammatory bowel diseases (IBD) has not been previously investigated. The presented study aimed to explore the prospect of dapagliflozin to mitigate 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model which recapitulates several features of the human IBD. The molecular mechanisms pertaining to the dynamic balance between autophagy/apoptosis and colon injury were delineated, particularly, AMPK/mTOR, HMGB1/RAGE/NF-κB and Nrf2/HO-1 pathways. The colon tissues were examined using immunoblotting, ELISA, and histopathology. Dapagliflozin (0.1, 1 and 5 mg/kg; p.o.) dose-dependently mitigated colitis severity as manifested by suppression of the disease activity scores, macroscopic damage scores, colon weight/length ratio, histopathologic perturbations, and inflammatory markers. More important, dapagliflozin enhanced colonic autophagy via upregulating Beclin 1 and downregulating p62 SQSTM1 protein expression. In this context, dapagliflozin activated the AMPK/mTOR pathway by increasing the p-AMPK/AMPK and lowering the p-mTOR/mTOR ratios, thereby, favoring autophagy. Moreover, dapagliflozin dampened the colonic apoptosis via lowering the caspase-3 activity, cleaved caspase-3 expression, and Bax/Bcl-2 ratio. Furthermore, dapagliflozin attenuated the HMGB1/RAGE/NF-κB pathway via lowering HMGB1, RAGE, and p-NF-κBp65 protein expression. Regarding oxidative stress, dapagliflozin lowered the oxidative stress markers and augmented the Nrf2/HO-1 pathway. Together, the present study reveals, for the first time, the ameliorative effect of dapagliflozin against experimental colitis via augmenting colonic autophagy and curbing apoptosis through activation of AMPK/mTOR and Nrf2/HO-1 pathways and suppression of HMGB1/RAGE/NF-κB cascade.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, NewGiza University, Giza, Egypt
| |
Collapse
|
10
|
Arab HH, Gad AM, Reda E, Yahia R, Eid AH. Activation of autophagy by sitagliptin attenuates cadmium-induced testicular impairment in rats: Targeting AMPK/mTOR and Nrf2/HO-1 pathways. Life Sci 2021; 269:119031. [PMID: 33453244 DOI: 10.1016/j.lfs.2021.119031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
AIMS Cadmium (Cd) is a prevalent environmental contaminant that incurs deleterious health effects, including testicular impairment. Sitagliptin, a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated marked cardio-, hepato-, and reno-protective actions, however, its impact on Cd-triggered testicular dysfunction has not been formerly investigated. Hence, the present study aimed to explore the probable beneficial impact of sitagliptin against Cd-evoked testicular impairment which may add to its potential clinical utility. The underlying mechanisms pertaining to the balance between testicular autophagy and apoptosis were explored, including the AMPK/mTOR and Nrf2/HO-1 pathways. MATERIALS AND METHODS The testicular tissues were examined using histopathology, immunohistochemistry, Western blotting, and ELISA. Sitagliptin (10 mg/kg/day, by gavage) was administered for 4 consecutive weeks. KEY FINDINGS Sitagliptin attenuated the testicular impairment via improvement of the relative testicular weight, sperm count/motility, sperm abnormalities, and serum testosterone. Additionally, sitagliptin counteracted Cd-induced histologic aberrations/disrupted spermatogenesis. Interestingly, sitagliptin augmented the defective autophagy as demonstrated by upregulating Beclin 1 protein expression and lowering p62 SQSTM1 protein accumulation. These effects were mediated via the activation of testicular AMPK/mTOR pathway as proven by increasing p-AMPK (Ser485, Ser491)/total AMPK and diminishing p-mTOR (Ser2448)/total mTOR protein expression. Additionally, sitagliptin suppressed the testicular apoptotic events via downregulating Bax and upregulating Bcl-2 protein expression. In tandem, sitagliptin suppressed the oxidative stress through lowering lipid peroxides and activating Nrf2/HO-1 pathway via upregulating the protein expression of Nrf2, and the downstream effectors HO-1 and GPx. SIGNIFICANCE Sitagliptin attenuated Cd-induced testicular injury via boosting the autophagy/apoptosis ratio through activation of AMPK/mTOR and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Enji Reda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt
| | - Rania Yahia
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| |
Collapse
|
11
|
Perrier JP, Kenny DA, Chaulot-Talmon A, Byrne CJ, Sellem E, Jouneau L, Aubert-Frambourg A, Schibler L, Jammes H, Lonergan P, Fair S, Kiefer H. Accelerating Onset of Puberty Through Modification of Early Life Nutrition Induces Modest but Persistent Changes in Bull Sperm DNA Methylation Profiles Post-puberty. Front Genet 2020; 11:945. [PMID: 33005172 PMCID: PMC7479244 DOI: 10.3389/fgene.2020.00945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
In humans and model species, alterations of sperm DNA methylation patterns have been reported in cases of spermatogenesis defects, male infertility and exposure to toxins or nutritional challenges, suggesting that a memory of environmental or physiological changes is recorded in the sperm methylome. The objective of this study was to ascertain if early life plane of nutrition could have a latent effect on DNA methylation patterns in sperm produced post-puberty. Holstein-Friesian calves were assigned to either a high (H) or moderate (M) plane of nutrition for the first 24 weeks of age, then reassigned to the M diet until puberty, resulting in HM and MM groups. Sperm DNA methylation patterns from contrasted subgroups of bulls in the HM (ejaculates recovered at 15 months of age; n = 9) and in the MM (15 and 16 months of age; n = 7 and 9, respectively) were obtained using Reduced Representation Bisulfite Sequencing. Both 15 and 16 months were selected in the MM treatment as these bulls reached puberty approximately 1 month after the HM bulls. Hierarchical clustering demonstrated that inter-individual variability unrelated to diet or age dominated DNA methylation profiles. While the comparison between 15 and 16 months of age revealed almost no change, 580 differentially methylated CpGs (DMCs) were identified between the HM and MM groups. Differentially methylated CpGs were mostly hypermethylated in the HM group, and enriched in endogenous retrotransposons, introns, intergenic regions, and shores and shelves of CpG islands. Furthermore, genes involved in spermatogenesis, Sertoli cell function, and the hypothalamic-pituitary-gonadal axis were targeted by differential methylation when HM and MM groups were compared at 15 months of age, reflecting the earlier timing of puberty onset in the HM bulls. In contrast, the genes still differentially methylated in MM bulls at 16 months of age were enriched for ATP-binding molecular function, suggesting that changes to the sperm methylome could persist even after the HM and MM bulls reached a similar level of sexual maturity. Together, results demonstrate that enhanced plane of nutrition in pre-pubertal calves associated with advanced puberty induced modest but persistent changes in sperm DNA methylation profiles after puberty.
Collapse
Affiliation(s)
- Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Aurélie Chaulot-Talmon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Colin J Byrne
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland.,Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | | | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anne Aubert-Frambourg
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Hélène Jammes
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Hélène Kiefer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
12
|
Zhang H, Ma Y, Wang M, Elsabagh M, Loor JJ, Wang H. Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction. Food Funct 2020; 11:4456-4470. [PMID: 32374309 DOI: 10.1039/d0fo00019a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current work aimed at investigating the effects of the dietary supplementation of N-carbamylglutamate (NCG) or l-arginine (Arg) on the duodenal mitophagy, mitochondrial function, inflammation, and barrier function in suckling lambs suffering from intrauterine-growth-retardation (IUGR). Forty-eight neonate Hu lambs were used in this study: 12 lambs with normal birth weight (NBW: 4.25 ± 0.14 kg) and 36 lambs with IUGR (3.01 ± 0.13 kg). Seven day old lambs were assigned to 4 treatment groups (12 lambs in each group) as follows: control group (CON), IUGR group, IUGR + Arg, and IUGR + NCG. Lambs were fed the experimental diets for 21 days from 7 days to 28 days of age. Compared with IUGR lambs, the Arg or NCG-treated IUGR lambs had a markedly higher duodenal transepithelial electrical resistance (TER) and lower fluorescein isothiocyanate dextran (FD4) (P < 0.05), respectively. The duodenal mitochondrial membrane potential change (ΔΨm), relative mitochondrial DNA (mtDNA) content, adenosine triphosphate (ATP) level, together with the activities of the respiratory complexes I, III, and IV were markedly higher in Arg or NCG-treated IUGR lambs than those in non-supplemented IUGR lambs (P < 0.05). The expressions of the integrity-related proteins (occludin and zonula occludens-1 (ZO-1)), antioxidant- and apoptosis-related proteins (B-cell lymphoma/leukaemia 2 (Bcl2), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPx1)), and the nitric oxide-dependent pathway-related proteins (epithelial NO synthase (eNOS) and inducible NO synthase (iNOS)) were higher in NCG or Arg-supplemented IUGR lambs than those in nontreated IUGR lambs (P < 0.05). The duodenal expressions of the mitophagy-related proteins (microtubule-associated protein light chain 3 (LC3) I, LC3 II, Belin1, PTEN induced putative kinase 1 (PINK1), and Parkin) and the immune function-related proteins (myeloid differentiation factor 88 (MyD88), IL-6, nuclear factor kappa B (p65), toll-like receptor (TLR4) and TNF-α) were reduced (P < 0.05) in NCG or Arg-supplemented IUGR lambs compared with non-supplemented IUGR lambs. These results demonstrated that the dietary supplementation of Arg or NCG enhanced the duodenal barrier function and mitochondrial function, mitigated duodenal inflammation, and suppressed mitophagy in suckling lambs suffering from IUGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Autophagy as a consequence of seasonal functions of testis and epididymis in adult male European bison (Bison bonasus, Linnaeus 1758). Cell Tissue Res 2019; 379:613-624. [PMID: 31705214 DOI: 10.1007/s00441-019-03111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
The European bison is still an animal endangered with extinction, so by learning factors that regulate its reproduction, we can contribute to the survival of this species. On the other hand, autophagy is a dynamic, lisosomal, and evolutionary conserved process which is essential for animal cell survival, homeostasis, and differentiation. This process was demonstrated in many species and in many organs; however, information on the metabolic course of autophagy in the male reproductive system in seasonally reproducing species is lacking. Therefore, in this study, we examined for the first time several autophagy-related factors (mTOR, ULK1, Atg13, PI3K, beclin1, beclin2, Atg14, Atg5, Atg16L, LC3) in testicular and epididymal tissues obtained from adult male individuals of the European bison. We compared the level of gene expression, protein synthesis, and localization of autophagy-related factors between June, September, and December (before, during, and after reproductive activity, respectively). We confirmed that the induction of autophagy was at the highest level in the period after reproductive activity, i.e., in December, when a significant increase in the gene and protein expression was observed for the majority of these factors, probably to ensure cellular protection. However, autophagy was also clearly marked in September, during the intense spermatogenesis, and this may indicate a great demand for autophagy-related proteins required for the normal development of reproductive cells. Obtained results seem to confirm that autophagy pathway, as a consequence of seasonal reproduction, may control the normal course of spermatogenesis in the male European bison.
Collapse
|
14
|
Ma J, Ren C, Yang H, Zhao J, Wang F, Wan Y. The Expression Pattern of p32 in Sheep Muscle and Its Role in Differentiation, Cell Proliferation, and Apoptosis of Myoblasts. Int J Mol Sci 2019; 20:ijms20205161. [PMID: 31635221 PMCID: PMC6829534 DOI: 10.3390/ijms20205161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
The complement 1q binding protein C (C1QBP), also known as p32, is highly expressed in rapidly growing tissues and plays a crucial role in cell proliferation and apoptosis. However, there are no data interpreting its mechanisms in muscle development. To investigate the role of p32 in sheep muscle development, an 856 bp cDNA fragment of p32 containing an 837 bp coding sequence that encodes 278 amino acids was analyzed. We then revealed that the expression of p32 in the longissimus and quadricep muscles of fetal sheep was more significantly up-regulated than expression at other developmental stages. Furthermore, we found that the expression of p32 was increased during myoblasts differentiation in vitro. Additionally, the knockdown of p32 in sheep myoblasts effectively inhibited myoblast differentiation, proliferation, and promoted cell apoptosis in vitro. The interference of p32 also changed the energy metabolism from Oxidative Phosphorylation (OXPHOS) to glycolysis and activated AMP-activated protein kinase (AMPK) phosphorylation in sheep myoblasts in vitro. Taken together, our data suggest that p32 plays a vital role in the development of sheep muscle and provides a potential direction for future research on muscle development and some muscle diseases.
Collapse
Affiliation(s)
- Jianyu Ma
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Caifang Ren
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Hua Yang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Zhao
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Wang
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjie Wan
- Institute of Sheep and Goat Science; Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Enhancement of epithelial cell autophagy induced by sinensetin alleviates epithelial barrier dysfunction in colitis. Pharmacol Res 2019; 148:104461. [DOI: 10.1016/j.phrs.2019.104461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
|
16
|
Productive performance and reproductive characteristics of Morada Nova male lambs fed with high-energy diet. Trop Anim Health Prod 2019; 51:2481-2491. [PMID: 31197722 DOI: 10.1007/s11250-019-01969-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/06/2019] [Indexed: 01/07/2023]
Abstract
Morada Nova breed sheep are without wool, tropicalized, small-sized animals, known for their high-quality meat and skin. Their body development naturally depends on the genetic potential and adequate nutritional support, which suggests that the offer of high-energy density diets positively influences their productive indicators. Thus, the present study investigated the effect of a high-energy diet for the Morada Nova lambs on body development and testicular function, considering their histomorphometric characteristics and seminal quality. Forty-two males (19.2 weeks, 20.7 ± 3.5 kg) were equally divided into two groups and fed with 2.05 Mcal (G7, n = 21) or 2.37 Mcal (G24, n = 21) of metabolizable energy/day, equivalent to 7% and 24% above the minimum for growing lambs. The animals were confined for 23 weeks (W0 to W23). Weight and body score differed significantly from the W1 (P < 0.05). From the W5, thoracic perimeter, body length, wither height, and rump attributes were higher in G24 (P < 0.05). The scrotal circumference and testicular volume were higher in G24 from the W3 (P < 0.05). Although testosterone levels were not affected (P = 0.05), the highest energy intake increased the diameter of the seminiferous tubules and the development of the epididymal epithelium (P < 0.05). This positively influenced the seminal quality and reduced the minor defects (21.87% vs. 17.13%) and the total spermatic defects (26.34% vs. 21.78%, P < 0.05). Thus, it is possible to employ higher levels of dietary energy for Morada Nova young males to express higher productive efficiency and earlier reproductive attributes of interest.
Collapse
|
17
|
Huang H, Wang Y, An Y, Jiao W, Xu Y, Han Q, Teng X, Teng X. Selenium alleviates oxidative stress and autophagy in lead-treated chicken testes. Theriogenology 2019; 131:146-152. [DOI: 10.1016/j.theriogenology.2019.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
|
18
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
19
|
Abstract
Multi-sire mating of a mob of ewes is commonly used in commercial sheep production systems. However, ram mating success (defined as the number of lambs sired by an individual) can vary between rams in the mating group. If this trait was repeatable and heritable, selection of rams capable of siring larger numbers of lambs could reduce the number of rams required for mating and ultimately lead to increased genetic gain. However, genetic correlations with other productive traits, such as growth and female fertility, could influence the potential for ram mating success to be used as a selection trait. In order to investigate this trait, parentage records (including accuracy of sire assignment) from 15 commercial ram breeding flocks of various breeds were utilised to examine the repeatability and heritability of ram mating success in multi-sire mating groups. In addition, genetic and phenotypic correlations with growth and female fertility traits were estimated using ASReml. The final model used for the ram mating success traits included age of the ram and mating group as fixed effects. Older rams (3+years old) had 15% to 20% greater mating success than younger rams (1 or 2 years of age). Increasing the stringency of the criteria for inclusion of both an individual lamb, based on accuracy of sire assignment, or a whole mating group, based on how many lambs had an assigned sire, increased repeatability and heritability estimates of the ram mating success traits examined. With the most stringent criteria employed, where assignment of sire accuracy was >0.95 and the total number of lambs in the progeny group that failed to have a sire assigned was<0.05, repeatability and heritability for loge(number of lambs) was 0.40±0.09 and 0.26±0.12, respectively. For proportion of lambs sired, repeatability and heritability were both 0.30±0.09. The two ram mating traits (loge(nlamb) and proportion) were highly correlated, both phenotypically and genetically (0.88±0.01 and 0.94±0.06, respectively). Both phenotypic and genetic correlations between ram mating success and growth and other female fertility traits were low and non-significant. In conclusion, there is scope to select rams capable of producing high numbers of progeny and thus increase selection pressure on rams to increase genetic gain.
Collapse
|