1
|
Su X, He Y, Li H, Yu T, Sun Q, Chen M, Zhang B, Wang W, Ju S, Li Q. Melatonin protects porcine oocytes from gossypol-induced meiosis defects via regulation of SIRT1-mediated mitophagy. Food Chem Toxicol 2025; 195:115122. [PMID: 39571718 DOI: 10.1016/j.fct.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Cottonseed meal (CSM) is an ideal source of protein feed ingredients. However, the gossypol contained in it has toxic effects on animals, limiting its use in livestock production. The underlying mechanisms remain largely unknown. This study aimed to investigate the adverse effects of gossypol exposure and assess whether melatonin, a natural antioxidant, could alleviate oocyte damage induced by gossypol. Porcine cumulus oocyte complexes (COCs) were treated with gossypol alone or co-treated with melatonin for 44 h during in vitro maturation. The results demonstrated that gossypol exposure induced oxidative stress and mitochondrial dysfunction, leading to oocyte maturation failure. Conversely, melatonin co-treatment mitigated these detrimental effects, by promoting oocyte mitophagy, as evidenced by the upregulation of PINK1, Parkin, and LC3 expressions, along with the downregulation of P62. Further investigation revealed that gossypol treatment significantly decreased SIRT1 protein expression, while melatonin co-treatment markedly increased it. Using the SIRT1 inhibitor Ex527 confirmed that melatonin enhances mitophagy through SIRT1, improving mitochondrial function and rescuing oocyte maturation. This study revealed the potential harm of gossypol on mammalian reproductive health, provided experimental reference for the protective effect of melatonin, and provided theoretical basis for the effective prevention and treatment of reproductive damage caused by gossypol.
Collapse
Affiliation(s)
- Xiaoli Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heran Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianhang Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinfeng Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaoyu Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Biao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weihan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiqiang Ju
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang L, Zheng H, Zhang X, Chen X, Liu Y, Tang Y, Zhang W, Wang Z, Zhao L, Guo Y. Effective Degradation of Free Gossypol in Defatted Cottonseed Meal by Bacterial Laccases: Performance and Toxicity Analysis. Foods 2024; 13:566. [PMID: 38397543 PMCID: PMC10888038 DOI: 10.3390/foods13040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cottonseed meal (CSM) is the major by-product of the cottonseed oil extraction process with high protein content. However, the presence of free gossypol (FG) in CSM severely restricts its utilization in the food and animal feed industries. The development of a biological strategy for the effective removal of FG in CSM has become an urgent need. In this study, three bacterial laccases including CotA from Bacillus licheniformis, CueO from Escherichia coli, and LcLac from Loigolactobacillus coryniformis were heterologously expressed and investigated for their FG degradation ability. The results showed that CotA laccase displayed the highest FG-degrading capacity among the three laccases, achieving 100% FG degradation at 37 °C and pH 7.0 in 1 h without the addition of a redox mediator. Moreover, in vitro and in vivo studies confirmed that the hepatotoxicity of FG was effectively eliminated after oxidative degradation by CotA laccase. Furthermore, the addition of CotA laccase could achieve 87% to 98% FG degradation in defatted CSM within 2 h. In conclusion, CotA laccase can be developed as an effective biocatalyst for the detoxification of FG in CSM.
Collapse
Affiliation(s)
- Liangyu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Hao Zheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Xingke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Xiaoxue Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Yanrong Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Yu Tang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Wei Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Zhixiang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| | - Lihong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.L.); (Y.T.); (L.Z.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.Z.); (H.Z.); (X.Z.); (X.C.); (W.Z.); (Z.W.)
| |
Collapse
|
3
|
Wang Y, Cao J, Wang G, Wei T, Hu K, Yi W, Zeng P, Li H, Wu Y, He Q. Synthesis and characterization of zeolitic imidazolate frameworks nanocrystals and their application in adsorption and detoxification of gossypol in cottonseed oil. Food Chem 2023; 418:135905. [PMID: 36966720 DOI: 10.1016/j.foodchem.2023.135905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Three zeolitic imidazolate frameworks (ZIFs) materials including ZIF-8 (H2O), ZIF-8 (methanol) and ZIF-L were synthesized and applied to the adsorption and detoxification of gossypol in cottonseed oil. The characterization results showed three ZIFs materials had good crystal structure, thermal stability and high specific surface area. The ZIFs materials had also good adsorption performance for gossypol and their adsorption processes can be described by the pseudo-second-order adsorption kinetic models. Adsorption isotherm analysis indicated that Langmuir model expressed a better conformity than Freundlich model, suggesting that the adsorption was the single-layer adsorption on a uniform site. Furthermore, the spiked experiment showed that the detoxification rate of ZIFs materials in vegetable oil was 72-86 %. A satisfied detoxification rate of 50-70 % was found in the detoxification experiment of real cottonseed oil samples. Therefore, these results demonstrate the great potential of using ZIFs materials as detoxification in cottonseed oil.
Collapse
|
4
|
Wannaratana S, Banlunara W, Chokeshaiusaha K, Sananmuang T. The reversible effects of gossypol toxicity on male pigeons' reproductive performance. Vet World 2022; 15:2836-2843. [PMID: 36718333 PMCID: PMC9880844 DOI: 10.14202/vetworld.2022.2836-2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Gossypol, a cotton seed derivative, is well known for its reversible antifertility in male reproduction across species. Its antifertility and reversibility effects on male reproductive function vary among species in dose-and time-dependent manners. In this study, the antifertility potential of gossypol in pigeons was evaluated for the first time to determine whether it might be used as a dietary supplement for pigeon population control. Materials and Methods Male pigeons were assigned into three experimental groups: The gossypol-treated group (n = 12), the sham control group (n = 6), and the negative control group (n = 6). There were two experimental periods: A gossypol-feeding period of 28 days and a gossypol-free period of 28 days. During the gossypol-feeding period, birds in the gossypol-treated group were fed 4 mg of gossypol extract per day. Birds in the sham control group were fed 0.5 mL of mixed ethanol and sunflower oil, while those in the negative control group were fed 0.5 mL of phosphate buffer saline. After the gossypol-feeding phase was completed, all remaining pigeons in all groups continued to receive their regular diet for an additional 28 days (gossypol-free phase). The body weight and semen quality of the birds in the experimental groups were compared to evaluate gossypol's antifertility effect. Results In the gossypol-treated group as compared to the control groups, the percentages of sperm motility and viability were significantly lower at 21 days, and the percentage of normal sperm morphology was significantly lower at 28 days during the gossypol-feeding period. After gossypol withdrawal, these antifertility effects were resumed and reached a comparable semen quality to the control groups within 14 days. Conclusion Gossypol supplementation (4 mg/day for 28 days) could lower male pigeons' reproductive performance in terms of sperm motility, viability, and sperm morphology. Such infertility was, however, reversible within 14 days after gossypol withdrawal without any side effects on the pigeons, suggesting its application as a safe contraceptive feeding for male pigeons.
Collapse
Affiliation(s)
- Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kaj Chokeshaiusaha
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Thanida Sananmuang
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand,Corresponding author: Thanida Sananmuang, e-mail: Co-authors: SW: , WB: , KC:
| |
Collapse
|
5
|
Ding ZM, Chen YW, Wang YS, Ahmad MJ, Yang SJ, Duan ZQ, Liu M, Yang CX, Xiong JJ, Liang AX, Huo LJ. Gossypol exposure induces mitochondrial dysfunction and oxidative stress during mouse oocyte in vitro maturation. Chem Biol Interact 2021; 348:109642. [PMID: 34509492 DOI: 10.1016/j.cbi.2021.109642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Gossypol is a yellow natural polyphenolic compound extracted from the seeds, leaves, stems, and flower buds of the cotton plant. Several studies have shown that exposure to gossypol impacts reproductive health in both humans and animals. However, whether gossypol exposure would influence oocyte quality has not yet been determined. Here, we studied the effects of gossypol on the meiotic maturation of mouse oocytes in vitro. The results revealed that gossypol exposure did not affect germinal vesicle breakdown (GVBD) but significantly reduced polar body extrusion (PBE) rates. Moreover, we observed meiotic spindle organization and chromosome alignment were entirely disturbed after gossypol exposure. Further, gossypol exposure also caused mitochondrial dysfunction and abruptly decreased the levels of cellular ATP, and diminished the mitochondrial membrane potential (MMP). Accordingly, gossypol-induced oxidative stress was confirmed through an increased level of reactive oxygen species (ROS). Early apoptosis incidence also increased as identified by positive Annexin-V signaling. Collectively, the above findings provide evidence that gossypol exposure impaired oocyte meiotic maturation, disturbed spindle structure and chromosome dynamics, disrupted mitochondrial function, induced oxidative stress, and triggered early apoptosis. These findings emphasize gossypol's adverse effects on oocyte maturation and thus on female fertility.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang-Wu Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng-Ji Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Qun Duan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Wang L, Chen M, Luo X, Fan Y, Zheng Z, He Z, Yin R, Meng T, Xu S, Pan Y, Su J, Du J, Zhang L, Tian X, Tian Y, Chen D, Ge H, Zhang N, Li P. Intramolecular Annulation of Gossypol by Laccase to Produce Safe Cottonseed Protein. Front Chem 2020; 8:583176. [PMID: 33335884 PMCID: PMC7736553 DOI: 10.3389/fchem.2020.583176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of the phenol gossypol has severely limited the utilization of cottonseed meal and oil in the food and animal feed industries. Highly efficient means of biodegradation of gossypol and an understanding of the cytotoxicity of its degradation products remain outside current knowledge and are of universal interest. In this work, we showed for the first time that laccase can catalyze the intramolecular annulation of the aldehyde and hydroxyl groups of gossypol for the o-semiquinone radical and originate the released ·OH radical. It was further found that the oxidation of aldehyde groups significantly decreases reproductive toxicity and hepatotoxicity. These results indicate a novel detoxification pathway for gossypol and reveal the crucial role played by radical species in cyclization. This discovery could facilitate the development of safe, convenient, and low-cost industrial methods for the detoxification of cotton protein and oil resources.
Collapse
Affiliation(s)
- Lin Wang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,School of Life Sciences, Anhui University, Hefei, China
| | - Ming Chen
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, China
| | - Xuecai Luo
- School of Life Sciences, Anhui University, Hefei, China
| | - Yanan Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Zai Zheng
- School of Life Sciences, Anhui University, Hefei, China
| | - Zongqin He
- School of Life Sciences, Anhui University, Hefei, China
| | - Ruochun Yin
- School of Life Sciences, Anhui University, Hefei, China
| | - Tao Meng
- School of Life Sciences, Anhui University, Hefei, China
| | - Shuyang Xu
- School of Life Sciences, Anhui University, Hefei, China
| | - Yu Pan
- School of Life Sciences, Anhui University, Hefei, China
| | - Jihu Su
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, China
| | - Jiangfeng Du
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, Department of Modern Physics, University of Science and Technology of China, Hefei, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Xiaohe Tian
- School of Life Sciences, Anhui University, Hefei, China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Dongdong Chen
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Silva J, Costa E, Muraro L, Rego F, Gasparini M, Soares L, Lopes F, Santos M. Efeito de diferentes concentrações de ingestão de gossipol livre sobre morfometria testicular e qualidade seminal de touros da raça Nelore. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO A cotonicultura tem forte fator de impacto na economia nacional, e o estado de Mato Grosso se destaca por ser o maior produtor de algodão herbáceo e deter o maior rebanho bovino do país, condições essas que estimulam o uso do caroço, da torta e do farelo de algodão na alimentação animal. Considerando que o gossipol está presente nos subprodutos do algodão e que seus efeitos sobre a reprodução podem reduzir a fertilidade dos animais, objetivou-se, com essa pesquisa, avaliar o efeito da ingestão de dietas com diferentes teores de gossipol livre por dia sobre a morfometria testicular e a qualidade seminal de touros da raça Nelore. Foram utilizados 28 touros, distribuídos aleatoriamente em seis tratamentos: T0, 0 grama de gossipol livre/touro/dia ; T1, 1,08 grama de gossipol livre/touro/dia; T2, 2,07 gramas de gossipol livre/touro/dia; T3, 3,24 gramas de gossipol livre/touro/dia; T4, 3,82 gramas de gossipol livre/touro/dia e T5, 5,08 gramas de gossipol livre/touro/dia. Os animais de cada tratamento foram mantidos confinados em área média de 100m2, dotada de bebedouro, cochos para mistura mineral e para volumoso/concentrado. O consumo de 3,24 gramas de gossipol livre/touro/dia alterou a qualidade espermática e a morfometria testicular de touros.
Collapse
|
8
|
Effects of soybean oil or various levels of whole cottonseed on growth performance, carcass traits, and meat quality of finishing bulls. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Singh S, Sharma SK, Kansal SK. Batch extraction of gossypol from cottonseed meal using mixed solvent system and its kinetic modeling. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2018.1558214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, India
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - S. K. Sharma
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - S. K. Kansal
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, India
| |
Collapse
|