1
|
Lodde V, Luciano AM, Garcia Barros R, Giovanardi G, Sivelli G, Franciosi F. Review: The putative role of Progesterone Receptor membrane Component 1 in bovine oocyte development and competence. Animal 2023; 17 Suppl 1:100783. [PMID: 37567656 DOI: 10.1016/j.animal.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2023] Open
Abstract
Acquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells. PGRMC1 has also a direct role in promoting a proper completion of bovine oocyte maturation, as altering its function leads to defective chromosome segregation and polar body extrusion. Strikingly, the mechanism by which PGRMC1 controls mitotic and meiotic cell division seems to be conserved, involving an association with the spindle apparatus and the chromosomal passenger complex through Aurora kinase B. Conclusive data on a possible role of PGRMC1 in the preimplantation embryo are lacking and further research is needed to test whether the mechanisms that are set in place in mitotic cells also govern blastomere cleavage and subsequent differentiation. Finally, PGRMC1 is also expressed in oviductal cells and, as such, it might also impact fertilisation and early embryonic development, although this issue is completely unexplored. However, the study of PGRMC1 function in the mammalian reproductive system remains a complex matter, due to its pleiotropic function.
Collapse
Affiliation(s)
- V Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy.
| | - A M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - R Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Giovanardi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - G Sivelli
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - F Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
2
|
Anbo N, Suzuki A, Mukangwa M, Takahashi R, Muranishi Y, Tetsuka M. Progesterone stimulates cortisol production in the maturing bovine cumulus-oocyte complex. Theriogenology 2022; 189:183-191. [PMID: 35780557 DOI: 10.1016/j.theriogenology.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022]
Abstract
In the bovine cumulus oophorus, 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1)-mediated cortisol production dramatically increases during the periovulatory period. This event is closely associated with increased progesterone (P4) production, implying a functional connection between these C21 steroids. In this study, we investigated the mutual regulation of P4 and cortisol production in the bovine cumulus oophorus. Bovine cumulus-oocyte complexes (COCs) were aspirated from follicles 2-5 mm in diameter and subjected to in vitro maturation (IVM) for 24 h in an M199 supplemented with fetal calf serum (FCS) and follicle-stimulating hormone (FSH). COCs were treated with trilostane (0, 0.1, 1, 10 mM), an inhibitor of P4 synthesis, RU486 (0, 0.1, 1, 10 mM), a receptor antagonist for the progesterone receptor (PR) and glucocorticoid receptor (GR), and various concentrations of a synthetic progestogen nomegestrol acetate (NA; 0, 0.001, 0.01, 0.1, 1, 10 mM) to examine effect of P4. The effects of cortisol (0, 0.1, 1, 10 mM) were also examined in the presence or absence of trilostane. Trilostane and RU486 suppressed cumulus expansion, cortisol production, and HSD11B1 but not hexose-6-phosphate dehydrogenase (H6PDH) expression. Concomitant treatment with NA reversed the effects of trilostane. Unlike NA, cortisol did not alter the antagonistic effects of trilostane on cumulus expansion and HSD11B1 expression. Cortisol did not affect P4 production or steroidogenic acute regulatory protein (STAR), cholesterol side-chain cleavage enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1), and HSD11B1 expression. Collectively, these results indicate that locally produced P4 is crucial in regulating the local glucocorticoid environment through PRtg in the maturing bovine cumulus oophorus. Cortisol, however, does not appear to regulate P4 or its production.
Collapse
Affiliation(s)
- Nobuhiro Anbo
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Akari Suzuki
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Memory Mukangwa
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Rio Takahashi
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yuki Muranishi
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Masafumi Tetsuka
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| |
Collapse
|
3
|
Peluso JJ. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022; 11:1632. [PMID: 35626669 PMCID: PMC9139379 DOI: 10.3390/cells11101632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
How progesterone influences ovarian follicle growth is a difficult question to answer because ovarian cells synthesize progesterone and express not only the classic nuclear progesterone receptor but also members of the progestin and adipoQ receptor family and the progesterone receptor membrane component (PGRMC) family. Which type of progestin receptor is expressed depends on the ovarian cell type as well as the stage of the estrous/menstrual cycle. Given the complex nature of the mammalian ovary, this review will focus on progesterone signaling that is transduced by PGRMC1 and PGRMC2 specifically as it relates to ovarian follicle growth. PGRMC1 was identified as a progesterone binding protein cloned from porcine liver in 1996 and detected in the mammalian ovary in 2005. Subsequent studies focused on PGRMC family members as regulators of granulosa cell proliferation and survival, two physiological processes required for follicle development. This review will present evidence that demonstrates a causal relationship between PGRMC family members and the promotion of ovarian follicle growth. The mechanisms through which PGRMC-dependent signaling regulates granulosa cell proliferation and viability will also be discussed in order to provide a more complete understanding of our current concept of how progesterone regulates ovarian follicle growth.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
4
|
Ding Z, Duan H, Ge W, Lv J, Zeng J, Wang W, Niu T, Hu J, Zhang Y, Zhao X. Regulation of progesterone during follicular development by FSH and LH in sheep. Anim Reprod 2022; 19:e20220027. [PMID: 35847559 PMCID: PMC9276014 DOI: 10.1590/1984-3143-ar2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022] Open
Abstract
Progesterone (P4) can participate in the development of female mammalian antral follicles through nuclear receptor (PGR). In this experiment, the differences of P4 synthesis and PGR expression in different developmental stages of sheep antral follicles (large > 5mm, medium 2-5mm, small < 2mm) were detected by enzyme-linked immunosorbent assay, immunohistochemistry, qRT-PCR and Western blotting. Secondly, sheep follicular granulosa cells were cultured in vitro. The effects of different concentrations of FSH and LH on P4 synthesis and PGR expression were studied. The results showed that acute steroid regulatory protein (StAR), cholesterol side chain lyase (P450scc) and 3β Hydroxysteroid dehydrogenase (3β-HSD) and PGR were expressed in antral follicles, and with the development of antral follicles in sheep, StAR, P450scc and the expression of 3β-HSD and PGR increased significantly. In vitro experiments showed that FSH and LH alone or together treatment could regulate P4 secretion and PGR expression in sheep follicular granulosa cells to varying degrees, hint P4 and PGR by FSH and LH, and LH was the main factor. Our results supplement the effects of FSH and LH on the regulation of P4 synthesis during follicular development, which provides new data for further study of steroid synthesis and function in follicular development.
Collapse
Affiliation(s)
- Ziqiang Ding
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Hongwei Duan
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenbo Ge
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, China
| | - Jianshu Lv
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Jianlin Zeng
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenjuan Wang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Tian Niu
- Gansu Agricultural University, China
| | - Junjie Hu
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Yong Zhang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Xingxu Zhao
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| |
Collapse
|
5
|
Gong S, Jiang L, Cheng H, Pan LZ, Xu MT, Zhang M, Yuan HJ, Tan JH. Effects of CRH and ACTH exposure during in vitro maturation on competence of pig and mouse oocytes. Theriogenology 2021; 173:211-220. [PMID: 34399385 DOI: 10.1016/j.theriogenology.2021.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Although it is known that stresses on females damage oocytes with increased production of stress hormones, whether corticotrophin-releasing hormone (CRH) or adrenocorticotropic hormone (ACTH) harm oocytes directly are largely unknown. We demonstrated that CRH exposure during in vitro maturation impaired competence of both pig and mouse cumulus-oocyte-complexes (COCs), and it impaired competence and induced apoptosis in pig cumulus-denuded oocytes (DOs) but not in mouse DOs. CRH receptor 1 was expressed in pig DOs and in cumulus cells (CCs) of both species but not in mouse DOs. In the presence of CRH, whereas mouse CCs underwent apoptosis, pig CCs did not. While pig CCs did, mouse CCs did not express CRH-binding protein. ACTH did not affect competence of either pig or mouse COCs or DOs although they all expressed ACTH receptor. Both pig and mouse CCs expressed steroidogenic acute regulatory protein (StAR), and ACTH enhanced their progesterone production while alleviating their apoptosis. Neither pig nor mouse DOs expressed StAR, but ACTH inhibited maturation-promoting factor and decelerated meiotic progression of DOs suggesting activation of protein kinase A (PKA). In conclusion, CRH impaired pig and mouse oocyte competence by interacting with CRH receptor and inducing CCs apoptosis, respectively. ACTH activated PKA in both DOs and CCs although it showed no effect on oocyte competence.
Collapse
Affiliation(s)
- Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Lin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Hao Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Liu-Zhu Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Ming-Tao Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Min Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, PR China.
| |
Collapse
|
6
|
Li Z, Jiang J, Yi X, Wang G, Wang S, Sun X. miR-18b regulates the function of rabbit ovary granulosa cells. Reprod Fertil Dev 2021; 33:363-371. [PMID: 33641714 DOI: 10.1071/rd20237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/17/2021] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) have been determined to participate in the process of oestradiol production. Generally, there are two pathways by which oestradiol levels change, one being the state of cells (i.e. the status of enzymes involved in the synthesis of hormones such as oestradiol) and the other being the number of cells that secrete oestradiol. It is known that oestrogens are the main steroids produced by granulosa cells (GCs) of mature ovarian follicles. In this study we explored the function of miR-18b in rabbit GCs by overexpressing or inhibiting its activity. We found that miR-18b silencing promoted the secretion of oestradiol by significantly affecting the expression of steroidogenesis-related genes. Thus, miR-18b may act as a negative regulator of the production of enzymes related to oestradiol synthesis and affect oestradiol production. Furthermore, the effects of miR-18b on the proliferation, cell cycle and apoptosis of GCs were investigated using a cell counting kit (CCK-8) proliferation assay, detection of annexin V-fluorescein isothiocyanate apoptosis, flow cytometry and quantitative polymerase chain reaction. The results showed that miR-18b upregulated GC apoptosis (miR-18b overexpression decreases cell growth and stimulates apoptosis). These findings suggest that miR-18b and the oestrogen receptor 1 (ESR1) gene may be attractive targets to further explore the molecular regulation of GCs. The miR-18b may also explain, in part, the abnormal folliculogenesis in mammals caused by conditions such as polycystic ovary syndrome, primary ovarian insufficiency, and others.
Collapse
Affiliation(s)
- Ze Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Junyi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, PR China; and Corresponding author.
| |
Collapse
|
7
|
Blaschka C, Diers S, Aravina M, Geisler S, Schuler G, Tetens J. Evaluation of a small volume oil-free in vitro production system for bovine embryos. Vet Med Sci 2021; 7:868-875. [PMID: 33502126 PMCID: PMC8136954 DOI: 10.1002/vms3.428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background: Embryos are usually produced in culture systems with an oil overlay, which conveys protection against the evaporation of water and microbial contamination. The oil can also release toxic substances and absorb essential components, such as hormones, which adversely affect the quality of the oocytes and the development of embryos in vitro. Objective: The aim of this study was to validate an oil‐free bovine in vitro production (IVP) system. Method: Cumulus–oocyte complexes collected from abattoir‐derived ovaries were matured, fertilized and cultured employing a standard system. The quantity of medium in both groups (with and without an oil overlay) and throughout all stages of IVP was maintained at a volume of 100 μl. The oil group was covered with paraffin oil. The maturation stage of oocytes was assessed using fluorescence staining after 24 hr and developmental stages of embryos were evaluated on day 8. The expanded day 8 blastocysts were assessed by live–dead staining. Results: Oocytes matured in the absence of an oil overlay had significantly higher maturation rates when compared against matured oocytes in medium with an oil overlay. Steroid concentration is higher in medium after maturation without oil cover. The developmental rate was significantly higher after culture without oil overlay. The total cell number and the live–dead ratio was not significantly different. The osmolality did not differ between both groups during maturation and slightly decreased during culture without oil. Conclusion: Based on the current study, bovine oil‐free IVP systems can be suggested as an alternative to oil‐covered medium.
Collapse
Affiliation(s)
- Carina Blaschka
- Division of Biotechnology and Livestock Reproduction, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
| | - Sophie Diers
- Division of Biotechnology and Livestock Reproduction, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
| | - Mariya Aravina
- Division of Biotechnology and Livestock Reproduction, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
| | - Swantje Geisler
- Division of Biotechnology and Livestock Reproduction, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
| | - Gerhard Schuler
- Clinic for Veterinary Obstetrics, Gynecology and Andrology, Molecular Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Jens Tetens
- Division of Biotechnology and Livestock Reproduction, Department of Animal Sciences, Georg-August-University, Goettingen, Germany
| |
Collapse
|
8
|
Asghari S, Nouri M, Darabi M, Valizadeh A. Steroid-depleted endometriosis serum improves oocyte maturation in IVM systems. J Cell Physiol 2020; 236:205-214. [PMID: 32537756 DOI: 10.1002/jcp.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022]
Abstract
In vitro maturation (IVM) is a novel approach to overcome the adverse effects of human in vitro fertilization (IVF). The aim of the present study is to evaluate the effect of total and steroid-depleted serum obtained from patients with endometriosis on IVM outcome as supplementation for this system. To this purpose, patients with endometriosis were selected according to in/excluding criteria. Germinal vesicles (GVs) and cumulus cells were treated with 10% of each serum. The expression levels of stearoyl CoA desaturase 1 (SCD 1) and cyclooxygenase-2 (COX-2) genes were evaluated by RT-qPCR. Gas-liquid chromatography and flow cytometry were performed to analyze fatty acids composition and apoptosis. The mRNA expression levels of SCD1 (2.47 fold) and COX-2 (6.4 fold), and also the synthesis of oleate, linoleate, and arachidonate were increased (1.19, 1.06, and 2.37 folds, respectively) in cumulus cells treated with steroid-depleted serum (p < .05). The synthesis of palmitate, palmitoleate, and stearate (0.995, 0.67, and 0.7 folds, respectively) and also the rate of apoptosis were significantly decreased in these cells (p < .05). Moreover, GVs cultured in steroid-depleted group showed a significantly higher rate of maturation (p < .001). Overall, our findings imply a new insight into the expansion of IVM system in oocytes development.
Collapse
Affiliation(s)
- Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Stem Cell Research Center, Stem Cells and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|