1
|
Lantiegne TH, Purchase CF. Can cryptic female choice prevent invasive hybridization in external fertilizing fish? Evol Appl 2023; 16:1412-1421. [PMID: 37622094 PMCID: PMC10445091 DOI: 10.1111/eva.13573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/08/2023] [Indexed: 08/26/2023] Open
Abstract
Polyandrous mating systems result in females mating with multiple males, generating opportunities for strong pre-mating and post-mating sexual selection. Polyandry also creates the potential for unintended matings and subsequent sperm competition with hybridizing species. Cryptic female choice allows females to bias paternity towards preferred males under sperm competition and may include conspecific sperm preference when under hybridization risk. The potential for hybridization becomes particularly important in context of invasive species that can novelly hybridize with natives, and by definition, have evolved allopatrically. We provide the first examination of conspecific sperm preference in a system of three species with the potential to hybridize: North American native Atlantic salmon (Salmo salar) and brook char (Salvelinus fontinalis), and invasive brown trout (Salmo trutta) from Europe. Using naturalized populations on the island of Newfoundland, we measured changes in sperm swimming performance, a known predictor of paternity, to determine the degree of modification in sperm swimming to female cues related to conspecific sperm preference. Compared to water alone, female ovarian fluid in general had a pronounced effect and changed sperm motility (by a mean of 53%) and swimming velocity (mean 30%), but not linearity (mean 6%). However, patterns in the degree of modification suggest there is no conspecific sperm preference in the North American populations. Furthermore, female cues from both native species tended to boost the sperm of invasive males more than their own. We conclude that cryptic female choice via ovarian fluid mediated sperm swimming modification is too weak in this system to prevent invasive hybridization and is likely insufficient to promote or maintain reproductive isolation between the native North American species.
Collapse
Affiliation(s)
- Tyler H. Lantiegne
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland & LabradorCanada
| | - Craig F. Purchase
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland & LabradorCanada
| |
Collapse
|
2
|
Wedekind C, Vonlanthen P, de Guttry C, Stadelmann R, Stadelmann N, Pirat A, Perroud G. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
3
|
Le François NR, Beirão J, Superio J, Dupont Cyr BA, Foss A, Bolla S. Spotted Wolffish Broodstock Management and Egg Production: Retrospective, Current Status, and Research Priorities. Animals (Basel) 2021; 11:2849. [PMID: 34679871 PMCID: PMC8532854 DOI: 10.3390/ani11102849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
The first artificially fertilized spotted wolffish (Anarhichas minor) eggs hatched in Norway in the mid-1990s as this species was considered by Norwegian authorities to be a top candidate species for cold-water aquaculture in the North Atlantic regions. Previous research conducted in Norway (since 1992) and Canada (since 2000), focused on identifying key biological parameters for spotted wolffish cultivation which led, respectively, to the rapid establishment of a full commercial production line in northern Norway, while Québec (Canada) is witnessing its first privately driven initiative to establish commercial production of spotted wolffish on its territory. The control of reproduction can be viewed as a major requirement to achieve the development of performant strains using genetic selection tools and/or all-year-round production to bring about maximal productivity and synchronization among a given captive population. Although the basic reproduction aspects are more understood and controlled there are still some challenges remaining involving broodstock and upscaling of operations that limit the achievement of a standardized production at the commercial level. Quality of gametes is still considered a major constraint and it can be affected by multiple factors including nutrition, environmental conditions, handling practices, and welfare status. Internal insemination/fertilization and the protracted incubation period are challenging as well as the establishment of a health monitoring program to secure large-scale operations. The profound progress achieved in the control of reproduction, sperm handling, and cryopreservation methods for this species is presented and discussed. In this review, we also go into detail over the full range of up-to-date cultivation practices involving broodstock and identify areas that could benefit from additional research efforts (i.e., broodstock nutrition, health and welfare, scaling-up egg and larval production, genetics, and development of selective breeding programs).
Collapse
Affiliation(s)
- Nathalie Rose Le François
- Laboratoire de Physiologie et Aquaculture de la Conservation, Division des Collections Vivantes, de la Conservation et de la Recherche, Biodôme de Montréal/Espace pour la Vie, Montréal, QC H1V 1B3, Canada
| | - José Beirão
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| | - Joshua Superio
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| | | | - Atle Foss
- Akvaplan-Niva Inc., Framsenteret, 9296 Tromsø, Norway;
| | - Sylvie Bolla
- Faculty of Bioscience and Aquaculture, Nord University, 8049 Bodo, Norway; (J.S.); (S.B.)
| |
Collapse
|
4
|
A multiplier peroxiporin signal transduction pathway powers piscine spermatozoa. Proc Natl Acad Sci U S A 2021; 118:2019346118. [PMID: 33674382 DOI: 10.1073/pnas.2019346118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.
Collapse
|
5
|
Nichols ZG, Rikard S, Alavi SMH, Walton WC, Butts IAE. Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity. PLoS One 2021; 16:e0243569. [PMID: 33735238 PMCID: PMC7971463 DOI: 10.1371/journal.pone.0243569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023] Open
Abstract
Oyster aquaculture is expanding worldwide, where many farms rely on seed produced by artificial spawning. As sperm motility and velocity are key determinants for fertilization success, understanding the regulation of sperm motility and identifying optimal environmental conditions can increase fertility and seed production. In the present study, we investigated the physiological mechanisms regulating sperm motility in Eastern oyster, Crassostrea virginica. Sperm motility was activated in ambient seawater with salinity 4-32 PSU with highest motility and velocity observed at 12-24 PSU. In artificial seawater (ASW) with salinity of 20 PSU, sperm motility was activated at pH 6.5-10.5 with the highest motility and velocity recorded at pH 7.5-10.0. Sperm motility was inhibited or totally suppressed in Na+, K+, Ca2+, and Mg2+-free ASW at 20 PSU. Applications of K+ (500 μM glybenclamide and 10-50 mM 4-aminopyridine), Ca2+ (1-50 μM mibefradil and 10-200 μM verapamil), or Na+ (0.2-2.0 mM amiloride) channel blockers into ASW at 20 PSU inhibited or suppressed sperm motility and velocity. Chelating extracellular Ca2+ ions by 3.0 and 3.5 mM EGTA resulted in a significant reduction and full suppression of sperm motility by 4 to 6 min post-activation. These results suggest that extracellular K+, Ca2+, and Na+ ions are involved in regulation of ionic-dependent sperm motility in Eastern oyster. A comparison with other bivalve species typically spawning at higher salinities or in full-strength seawater shows that ionic regulation of sperm motility is physiologically conserved in bivalves. Elucidating sperm regulation in C. virginica has implications to develop artificial reproduction, sperm short-term storage, or cryopreservation protocols, and to better predict how changes in the ocean will impact oyster spawning dynamics.
Collapse
Affiliation(s)
- Zoe G. Nichols
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Scott Rikard
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | | | - William C. Walton
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
- Auburn University Shellfish Lab, Dauphin Island, Alabama, United States of America
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
6
|
Żarski D, Ben Ammar I, Bernáth G, Baekelandt S, Bokor Z, Palińska-Żarska K, Fontaine P, Horváth Á, Kestemont P, Mandiki SNM. Repeated hormonal induction of spermiation affects the stress but not the immune response in pikeperch (Sander lucioperca). FISH & SHELLFISH IMMUNOLOGY 2020; 101:143-151. [PMID: 32229293 DOI: 10.1016/j.fsi.2020.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/25/2023]
Abstract
Hormonal induction of spermiation, previously reported to be immunogenic in fishes, is a common hatchery practice in pikeperch, Sander lucioperca. The aim of the present study was to investigate the effects of repeated induction of spermiation in pikeperch, following application of either human chorionic gonadotropin (hCG) or salmon gonadoliberine analogue (sGnRHa) on sperm quality indices as well as on immune and stress response. Mature males of pikeperch (n = 7 per group) were stimulated twice with five days between injections of either hCG (hCG; 500 IU kg-1), sGnRHa (sGnRHa; 50 μg kg-1) or NaCl (control group; 1 ml kg-1) to assess spermatozoa motility with a computer-assisted sperm analysis (CASA) system. During second sampling, blood plasma was sampled for humoral innate immune (peroxidase and lysozyme activities, ACH50), stress (cortisol, glucose) and endocrine (testosterone) markers. In addition, the head kidney was dissected to assay the expression of several immune genes (such as il1, c3, hamp, tnf-α and lys genes). The results indicate that hormonal treatment significantly increased sperm production. Sperm sampled after the hormonal treatment maintained its quality throughout the study, regardless of the sampling time. However, it appears that the application of hCG induced elevated cortisol and glucose plasma levels compared to the control group. Almost all immune markers, except the relative expression of hepcidin (hamp gene), were unaffected by the two hormones applied. The results showed that the induction treatment of spermiation processes in pikeperch resulted in an important physiological stress response for which the intensity varied according to the hormonal agent used. However, this stress response (more profound following application of hCG) was weakly associated with innate immune functions. On the other hand, a significant negative correlation between the expression of several important immune markers (peroxidase activity, relative expression of c3 and il1 genes) and sperm quality indices indicates significant involvement of immune status on sperm quality. The results obtained shed light on immune-system-induced modifications to sperm quality. The data presented here highlight the need for careful revision of broodstock management and selection practices where welfare status as well as individual predispositions of fish to cope with the stress should be taken under the consideration.
Collapse
Affiliation(s)
- Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Imen Ben Ammar
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | - Gergely Bernáth
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Sébastien Baekelandt
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | - Zoltán Bokor
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Katarzyna Palińska-Żarska
- Department of Fisheries, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Ákos Horváth
- Department of Aquaculture, Szent István University, Gödöllő, Hungary
| | - Patrick Kestemont
- URBE, Institute of Life, Earth & Environment, Université de Namur, Namur, Belgium
| | | |
Collapse
|
7
|
A Simple and Efficient Semen Cryopreservation Method to Increase the Genetic Variability of Endangered Mediterranean Brown Trout Inhabiting Molise Rivers. Animals (Basel) 2020; 10:ani10030403. [PMID: 32121342 PMCID: PMC7143869 DOI: 10.3390/ani10030403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of our study was to test the effectiveness of a simple semen cryopreservation procedure, developed for cultivated salmonid, on the wild salmonid of the Mediterranean area and to evaluate the effect of different thawing rates and sperm-to-egg ratios. The semen of five individual males was diluted into a final extender concentration of 0.15 M glucose and 7.5% methanol and loaded into 0.25 mL plastic straws, and a final sperm concentration of 3.0 × 109 sperm/mL was obtained. After equilibration, the straws were frozen by exposure to liquid nitrogen vapor at 3 cm above the liquid nitrogen level for 5 min. The semen was thawed at 40 °C/5 s or 10 °C/30 s. The sperm cryosurvival was evaluated by examining in vitro the sperm motility parameters using the CASA system, followed by fertilization trials in vivo, using three different sperm-to-egg ratios 6 × 105, 4.5 × 105 and 3 × 105:1. The applied cryopreservation procedure resulted in remarkably high (85.6%) post-thaw sperm total motility, when the semen was thawed at 40 °C/5 s, whilst the highest fertilization rate (53.1%) was recorded for a sperm-to-egg ratio of 4.5 × 105:1. According to these outcomes, the cryopreservation procedure that was tested turned out to be effective for the wild population of Mediterranean brown trout and practical for the creation of the first European semen cryobank foreseen as part of our "LIFE" Nat.Sal.Mo. project.
Collapse
|
8
|
Zadmajid V, Myers JN, Sørensen SR, Ernest Butts IA. Ovarian fluid and its impacts on spermatozoa performance in fish: A review. Theriogenology 2019; 132:144-152. [PMID: 31022604 DOI: 10.1016/j.theriogenology.2019.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
Abstract
Factors such as gamete quality can profoundly affect fertility, but the spawning micro-environment that surrounds the spermatozoa and eggs during gamete contact has largely been neglected. In fishes, understanding these gametic interactions is crucial because each female creates a unique spawning environment by simultaneously expelling her distinct ovarian fluid (OF) along with an egg batch. In turn, OF has been shown to influence spermatozoa performance traits by modifying spermatozoa behaviors and fertilization outcomes. Here, we shed light on these gametic interactions by overviewing literature on OF and how it impacts spermatozoa performance traits. Fish OF is clear or has slight coloration and can constitute ≤10-30% of egg mass. Viscosity of the OF is ∼2- to 3-fold higher than water and its pH ranges 6.2 to 8.8. Osmolality of the OF is lower in freshwater (190-322 mOsmol/kg) than marine species (289-514 mOsmol/kg). Na+ (98.3-213.7 mmol/L) and Cl- (89.8-172.7 mmol/L) are predominant ions in OF, while K+ (1.7-19.3 mmol/L), Mg2+ (0.4-8.1 mmol/L), and Ca2+(0.5-9.7 mmol/L) ions are detected at lower concentrations. Protein levels can be high in OF and exhibit intra- and inter-species variation (54-826 mg/100 mL). Fish OF also contains a series of organic components and substances that enhance and/or attract sperm towards the vicinity of an egg. OF can also differentially impact sperm based on genetic relatedness of mates, male phenotype (i.e. alternative reproductive tactics), or geographic origin. To conclude, when testing further reproductive paradigms, we suggest a shift from classic spermatozoa activation medium (water only) to more natural spawning media, which encompass OF-spermatozoa interactions.
Collapse
Affiliation(s)
- Vahid Zadmajid
- Department of Fisheries Science, Faculty of Natural Resources, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Jaelen Nicole Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Sune Riis Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Ian Anthony Ernest Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States.
| |
Collapse
|