1
|
He SY, Liu RP, Wang CR, Wang XQ, Wang J, Xu YN, Kim NH, Han DW, Li YH. Improving the developmental competences of porcine parthenogenetic embryos by Notoginsenoside R1-induced enhancement of mitochondrial activity and alleviation of proapoptotic events. Reprod Domest Anim 2023; 58:1583-1594. [PMID: 37696770 DOI: 10.1111/rda.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Notoginsenoside R1 (NGR1), derived from the Panax notoginseng root and rhizome, exhibits diverse pharmacological influences on the brain, neurons, and osteoblasts, such as antioxidant effects, mitochondrial function protection, energy metabolism regulation, and inhibition of oxygen radicals, apoptosis, and cellular autophagy. However, its effect on early porcine embryonic development remains unclear. Therefore, we investigated NGR1's effects on blastocyst quality, reactive oxygen species (ROS) levels, glutathione (GSH) levels, mitochondrial function, and embryonic development-related gene expression in porcine embryos by introducing NGR1 during the in vitro culture (IVC) of early porcine embryos. Our results indicate that an addition of 1 μM NGR1 significantly increased glutathione (GSH) levels, blastocyst formation rate, and total cell number and proliferation capacity; decreased ROS levels and apoptosis rates in orphan-activated porcine embryos; and improved intracellular mitochondrial distribution, enhanced membrane potential, and reduced autophagy. In addition, pluripotency-related factor levels were elevated (NANOG and octamer-binding transcription factor 4 [OCT4]), antioxidant-related genes were upregulated (nuclear factor-erythroid 2-related factor 2 [NRF2]), and apoptosis- (caspase 3 [CAS3]) and autophagy-related genes (light chain 3 [LC3B]) were downregulated. These results indicate that NGR1 can enhance early porcine embryonic development by protecting mitochondrial function.
Collapse
Affiliation(s)
- Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Wook Han
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
2
|
Liu RP, Wang XQ, Wang J, Dan L, Li YH, Jiang H, Xu YN, Kim NH. Oroxin A reduces oxidative stress, apoptosis, and autophagy and improves the developmental competence of porcine embryos in vitro. Reprod Domest Anim 2022; 57:1255-1266. [PMID: 35780288 DOI: 10.1111/rda.14200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
Oroxin A (OA) is a flavonoid isolated from Oroxylum indicum (L.) Kurz that has various biological activities, including antioxidant activities. This study aimed to examine the viability of using OA in an in vitro culture (IVC) medium for its antioxidant effects and related molecular mechanisms on porcine blastocyst development. In this study, we investigated the effects of OA on early porcine embryo development via terminal deoxynucleotidyl transferase dUTP nick-end labeling, 5-ethynyl-2'-deoxyuridine labeling, quantitative reverse transcription PCR, and immunocytochemistry. Embryos cultured in the IVC medium supplemented with 2.5 μM of OA had an increased blastocyst formation rate, total cell number, and proliferation capacity, along with a low apoptosis rate. OA supplementation decreased reactive oxygen species levels, while increasing glutathione levels. OA-treated embryos exhibited an improved intracellular mitochondrial membrane potential and reduced autophagy. Moreover, levels of pluripotency- and antioxidant-related genes were upregulated, whereas those of apoptosis- and autophagy-related genes were downregulated by OA addition. In conclusion, OA improves preimplantation embryonic development by reducing oxidative stress and enhancing mitochondrial function.
Collapse
Affiliation(s)
- Rong-Ping Liu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Xin-Qin Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Jing Wang
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Luo Dan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Ying-Hua Li
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun, China
| | - Yong-Nan Xu
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| | - Nam-Hyung Kim
- School of Biotechnology and Health Sciences, Wuyi University, 529000, Jiangmen, China
| |
Collapse
|
3
|
New Wenshen Shengjing Decoction Improves Early Embryonic Development by Maintaining Low Levels of H3K4me3 in Sperm. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9775473. [PMID: 35237692 PMCID: PMC8885201 DOI: 10.1155/2022/9775473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Background New Wenshen Shengjing Decoction (NWSSJD), a traditional Chinese compound medicine, has significant effect on spermatogenesis disorder and can significantly improve sperm quality. Many components in NWSSJD can induce epigenetic modifications of different types of cells. It is not yet known whether they can cause epigenetic modifications in sperm or early embryos. Objective This study investigated the effect of NWSSJD on mouse early embryonic development and its regulation of H3K4me3 in mouse sperm and early embryos. Methods Spermatogenesis disorder was induced in male mice with CPA (cyclophosphamide). NWSSJD was administrated for 30 days. Then, the male mice were mated with the female mice with superovulation, and the embryo degeneration rate of each stage was calculated. Immunofluorescence staining was used to detect the expression of H3K4me3 in sperm and embryos at various stages. Western blotting was performed to detect methyltransferase SETD1B expression. The expressions of development-related genes (OCT-4, NANOG, and CDX2) and apoptosis-related genes (BCL-2 and p53) were measured with qRT-PCR. Results Compared with the CPA group, NWSSJD significantly reduced the H3K4me3 level in sperms, significantly increased the number of normal early embryos (2-cell embryos, 3-4-cell embryos, 8-16-cell embryos, and blastocysts) per mouse, and reduced the degeneration rate of the embryos. The expression levels of H3K4me3 and methyltransferase SETD1B in early embryos were significantly elevated by NWSSJD. Additionally, NWSSJD significantly promoted BCL-2 expression, while reducing p53 expression, thus inhibiting embryonic cell apoptosis. Moreover, the expressions of development-related genes OCT-4 and CDX2 were significantly increased by NWSSJD, but NANOG expression had no significant difference. Conclusion NWSSJD may promote early embryonic development possibly by maintaining low H3K4me3 levels in sperms and normal H3K4me3 modification in early embryos and by inhibiting embryonic cell apoptosis.
Collapse
|
4
|
Lee M, Choi K, Oh J, Kim S, Lee D, Choe GC, Jeong J, Lee C. SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine pre-implantation embryo development. Cell Prolif 2021; 54:e13097. [PMID: 34250657 PMCID: PMC8349655 DOI: 10.1111/cpr.13097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Gene regulation in early embryos has been widely studied for a long time because lineage segregation gives rise to the formation of a pluripotent cell population, known as the inner cell mass (ICM), during pre-implantation embryo development. The extraordinarily longer pre-implantation embryo development in pigs leads to the distinct features of the pluripotency network compared with mice and humans. For these reasons, a comparative study using pre-implantation pig embryos would provide new insights into the mammalian pluripotency network and help to understand differences in the roles and networks of genes in pre-implantation embryos between species. MATERIALS AND METHODS To analyse the functions of SOX2 in lineage segregation and cell proliferation, loss- and gain-of-function studies were conducted in pig embryos using an overexpression vector and the CRISPR/Cas9 system. Then, we analysed the morphological features and examined the effect on the expression of downstream genes through immunocytochemistry and quantitative real-time PCR. RESULTS Our results showed that among the core pluripotent factors, only SOX2 was specifically expressed in the ICM. In SOX2-disrupted blastocysts, the expression of the ICM-related genes, but not OCT4, was suppressed, and the total cell number was also decreased. Likewise, according to real-time PCR analysis, pluripotency-related genes, excluding OCT4, and proliferation-related genes were decreased in SOX2-targeted blastocysts. In SOX2-overexpressing embryos, the total blastocyst cell number was greatly increased but the ICM/TE ratio decreased. CONCLUSIONS Taken together, our results demonstrated that SOX2 is essential for ICM formation and cell proliferation in porcine early-stage embryogenesis.
Collapse
Affiliation(s)
- Mingyun Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Kwang‐Hwan Choi
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Research and Development CenterSpace F corporationHwasungKorea
| | - Jong‐Nam Oh
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Seung‐Hun Kim
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Dong‐Kyung Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Research and Development CenterSpace F corporationHwasungKorea
| | - Gyung Cheol Choe
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Jinsol Jeong
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Chang‐Kyu Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Institute of Green Bio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
5
|
Cai Q, Wen K, Ma M, Chen W, Mo D, He Z, Chen Y, Cong P. EZH2 is essential for spindle assembly regulation and chromosomal integrity during porcine oocyte meiotic maturation†. Biol Reprod 2020; 104:562-577. [PMID: 33246325 DOI: 10.1093/biolre/ioaa214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) has been extensively investigated to participate in diverse biological processes, including carcinogenesis, the cell cycle, X-chromosome inactivation, and early embryonic development. However, the functions of this protein during mammalian oocyte meiotic maturation remain largely unexplored. Here, combined with RNA-Seq, we provided evidence that EZH2 is essential for oocyte meiotic maturation in pigs. First, EZH2 protein expression increased with oocyte progression from GV to MII stage. Second, the siRNA-mediated depletion of EZH2 led to accelerated GVBD and early occurrence of the first polar body extrusion. Third, EZH2 knockdown resulted in defective spindle assembly, abnormal SAC activity, and unstable K-MT attachment, which was concomitant with the increased rate of aneuploidy. Finally, EZH2 silencing exacerbated oxidative stress by increasing ROS levels and disrupting the distribution of active mitochondria in porcine oocytes. Furthermore, parthenogenetic embryonic development was impaired following the depletion of EZH2 at GV stage. Taken together, we concluded that EZH2 is necessary for porcine oocyte meiotic progression through regulating spindle organization, maintaining chromosomal integrity, and mitochondrial function.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Identification and Expression Pattern of EZH2 in Pig Developing Fetuses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5315930. [PMID: 33083470 PMCID: PMC7557918 DOI: 10.1155/2020/5315930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
The proper methylation status of histones is essential for appropriate cell lineage and organogenesis. EZH2, a methyltransferase catalyzing H3K27me3, has been abundantly studied in human and mouse embryonic development. The pig is an increasing important animal model for molecular study and pharmaceutical research. However, the transcript variant and temporal expression pattern of EZH2 in the middle and late porcine fetus are still unknown. Here, we identified the coding sequence of the EZH2 gene and characterized its expression pattern in fetal tissues of Duroc pigs at 65- and 90-day postcoitus (dpc). Our results showed that the coding sequence of EZH2 was 2241 bp, encoding 746 amino acids. There were 9 amino acid insertions and an amino acid substitution in this transcript compared with the validated reference sequence in NCBI. EZH2 was ubiquitously expressed in the fetal tissues of two time points with different expression levels. These results validated a different transcript in pigs and characterized its expression profile in fetal tissues of different gestation stages, which indicated that EZH2 played important roles during porcine embryonic development.
Collapse
|
7
|
Tatehana M, Kimura R, Mochizuki K, Inada H, Osumi N. Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PLoS One 2020; 15:e0230930. [PMID: 32267870 PMCID: PMC7141650 DOI: 10.1371/journal.pone.0230930] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human epidemiological studies have shown that paternal aging as one of the risk factors for neurodevelopmental disorders, such as autism, in offspring. A recent study has suggested that factors other than de novo mutations due to aging can influence the biology of offspring. Here, we focused on epigenetic alterations in sperm that can influence developmental programs in offspring. In this study, we qualitatively and semiquantitatively evaluated histone modification patterns in male germline cells throughout spermatogenesis based on immunostaining of testes taken from young (3 months old) and aged (12 months old) mice. Although localization patterns were not obviously changed between young and aged testes, some histone modification showed differences in their intensity. Among histone modifications that repress gene expression, histone H3 lysine 9 trimethylation (H3K9me3) was decreased in the male germline cells of the aged testis, while H3K27me2/3 was increased. The intensity of H3K27 acetylation (ac), an active mark, was lower/higher depending on the stages in the aged testis. Interestingly, H3K27ac was detected on the putative sex chromosomes of round spermatids, while other chromosomes were occupied by a repressive mark, H3K27me3. Among other histone modifications that activate gene expression, H3K4me2 was drastically decreased in the male germline cells of the aged testis. In contrast, H3K79me3 was increased in M-phase spermatocytes, where it accumulates on the sex chromosomes. Therefore, aging induced alterations in the amount of histone modifications and in the differences of patterns for each modification. Moreover, histone modifications on the sex chromosomes and on other chromosomes seems to be differentially regulated by aging. These findings will help elucidate the epigenetic mechanisms underlying the influence of paternal aging on offspring development.
Collapse
Affiliation(s)
- Misako Tatehana
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Kentaro Mochizuki
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Center for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|