1
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
2
|
Neubrand L, Pothmann H, Besenfelder U, Havlicek V, Gabler C, Dolezal M, Aurich C, Drillich M, Wagener K. In vivo dynamics of pro-inflammatory factors, mucins, and polymorph nuclear neutrophils in the bovine oviduct during the follicular and luteal phase. Sci Rep 2023; 13:22353. [PMID: 38102308 PMCID: PMC10724147 DOI: 10.1038/s41598-023-49151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Dynamic functional changes in the oviductal microenvironment are the prerequisite for the establishment of pregnancy. The objective of this study was to gain the first insights into oestrous cycle-dependent dynamics of polymorph nuclear neutrophils (PMN) and the mRNA abundance of selected genes and their correlations in the oviduct of living cows. Mini-cytobrush samples were taken from the oviducts of healthy heifers (n = 6) and cows (n = 7) during the follicular (FOL) and luteal phase (LUT) by transvaginal endoscopy. Total RNA was isolated from the samples and subjected to reverse transcription-quantitative PCR for selected pro-inflammatory factors, glycoproteins, and a metabolic marker. The percentage of PMN was determined by cytological examination. The mean PMN percentage was 2.8-fold greater during LUT than FOL. During LUT, significantly greater mRNA abundance of the pro-inflammatory factors IL1B, CXCL1, CXCL3, and CXCL8 was observed. The OVGP1 mRNA abundance was twice as high during FOL than in LUT. Pearson correlation, principal component analysis and heatmap analyses indicated characteristic functional patterns with strong correlations among investigated factors. Using this novel approach, we illustrate complex physiological dynamics and interactions of the mRNA expression of pro-inflammatory factors, mucins, OVGP1, and PMN in the oviduct during the oestrous cycle.
Collapse
Affiliation(s)
- L Neubrand
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - H Pothmann
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - U Besenfelder
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - V Havlicek
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biotechnology in Animal Production, Interuniversity Department of Agrobiotechnology (IFA Tulln), University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - C Gabler
- Institute of Veterinary Biochemistry, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M Dolezal
- Platform for Bioinformatics and Biostatistics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - C Aurich
- Centre for Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Unit for Reproduction Medicine and Udder Health, Clinic for Farm Animals, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- Clinical Unit for Herd Health Management in Ruminants, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Besenfelder U, Havlicek V. The interaction between the environment and embryo development in assisted reproduction. Anim Reprod 2023; 20:e20230034. [PMID: 37700910 PMCID: PMC10494886 DOI: 10.1590/1984-3143-ar2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 09/14/2023] Open
Abstract
It can be assumed that the natural processes of selection and developmental condition in the animal provide the best prerequisites for embryogenesis resulting in pregnancy and subsequent birth of a healthy neonate. In contrast, circumventing the natural selection mechanisms and all developmental conditions in a healthy animal harbors the risk of counteracting, preventing or reducing the formation of embryos or substantially restricting their genesis. Considering these facts, it seems to be obvious that assisted reproductive techniques focusing on early embryonic stages serve an expanded and unselected germ cell pool of oocytes and sperm cells, and include the culture of embryos outside their natural habitat during and after fertilization for manipulation and diagnostic purposes, and for storage. A significant influence on the early embryonic development is seen in the extracorporeal culture of bovine embryos (in vitro) or stress on the animal organism (in vivo). The in vitro production per se and metabolic as well as endocrine changes in the natural environment of embryos represent adequate models and serve for a better understanding. The purpose of this review is to give a brief presentation of recent techniques aimed at focusing more on the complex processes in the Fallopian tube to contrast in vivo and in vitro prerequisites and abnormalities in early embryonic development and serve to identify potential new ways to make the use of ARTs more feasible.
Collapse
Affiliation(s)
- Urban Besenfelder
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - Vitezslav Havlicek
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, Vienna, Austria
| |
Collapse
|
4
|
Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Sci Rep 2022; 12:4135. [PMID: 35264682 PMCID: PMC8907256 DOI: 10.1038/s41598-022-07929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.
Collapse
|
5
|
Aranciaga N, Morton JD, Maes E, Gathercole JL, Berg DK. Proteomic determinants of uterine receptivity for pregnancy in early and mid-postpartum dairy cows†. Biol Reprod 2021; 105:1458-1473. [PMID: 34647570 DOI: 10.1093/biolre/ioab190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Dairy cow subfertility is a worldwide issue arising from multiple factors. It manifests in >30% early pregnancy losses in seasonal pasture-grazed herds, especially when cows are inseminated in the early post-partum period. Most losses occur before implantation, when embryo growth depends on factors present in maternal tract fluids. Here we examined the proteomic composition of early and mid-postpartum uterine luminal fluid in crossbred lactating dairy cows to identify molecular determinants of fertility. We also explored changes in uterine luminal fluid from first to third estrus cycles postpartum in individual cows, linking those changes with divergent embryo development. For this, we flushed uteri of 87 cows at day 7 of pregnancy at first and third estrus postpartum, recovering and grading their embryos. Out of 1563 proteins detected, 472 had not been previously reported in this fluid, and 408 were predicted to be actively secreted by bioinformatic analysis. The abundance of 18 proteins with roles in immune regulation and metabolic function (e.g. cystatin B, pyruvate kinase M2) was associated with contrasting embryo quality. Matched-paired pathway analysis indicated that, from first to third estrus postpartum, upregulation of metabolic (e.g. creatine and carbohydrate) and immune (e.g. complement regulation, antiviral defense) processes were related to poorer quality embryos in the third estrus cycle postpartum. Conversely, upregulated signal transduction and protein trafficking appeared related to improved embryo quality in third estrus. These results advance the characterization of the molecular environment of bovine uterine luminal fluid and may aid understanding fertility issues in other mammals, including humans.
Collapse
Affiliation(s)
- Nicolas Aranciaga
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand.,Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.,Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Evelyne Maes
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand
| | | | - Debra K Berg
- Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| |
Collapse
|
6
|
Bragança GM, Alcântara-Neto AS, Batista RITP, Brandão FZ, Freitas VJF, Mermillod P, Souza-Fabjan JMG. Oviduct fluid during IVF moderately modulates polyspermy in in vitro-produced goat embryos during the non-breeding season. Theriogenology 2021; 168:59-65. [PMID: 33857909 DOI: 10.1016/j.theriogenology.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022]
Abstract
The present study determined i) the presence of proteins (oviduct-specific glycoprotein, OVGP1; heat shock protein-70A, HSPA1A; heat shock protein-A8, HSPA8; annexin A1, ANXA1; annexin A5, ANXA5; and myosin-9, MYH9) known to be involved in early reproduction in the oviduct fluid (OF) of anestrous goats; and ii) the functional effect of during IVF on polyspermy modulation and embryonic development. In vitro-matured oocytes were co-cultured with spermatozoa (1.0, 2.0, or 4.0 x 106 cells/mL) for 18 h in SOF medium supplemented with 5 μg/mL of heparin, 4 μg/mL gentamicin, and 10% estrus sheep serum (CTRL1, CTRL2, and CTRL4 groups) or the same medium plus 10% OF (OF1, OF2, and OF4 groups) obtained from anestrus goats. The analysis of OF by western blotting confirmed the presence of the six proteins tested for. The increase in sperm concentration had no effect (P > 0.05) on the penetration rate in any group; however, monospermy rate decreased as sperm concentration was increased in both OF and CTRL. Regardless of the concentration used, when data were pooled, OF supplementation improved (P < 0.05) monospermy and tended (P = 0.057) to enhance IVF efficiency. Additionally, IVF efficiency was higher (P < 0.05) in OF1 than in OF4 [60 ± 13 vs 37 ± 5%). The development capacity was not affected (P > 0.05) by the sperm concentration and OF treatment, and the average values were cleavage (72 ± 2.6%), blastocyst (37 ± 3.0%), blastocyst in relation to the cleaved (51 ± 4.8%), hatched (62 ± 1.2%), and number of cells per blastocyst (174 ± 1.8%). In conclusion, the six proteins analyzed are present in the OF of anestrous goats, and the supplementation of this OF during IVF may modulate the polyspermy incidence and enhance IVF efficiency, especially when 1x106 sperm per mL is used.
Collapse
Affiliation(s)
- G M Bragança
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France; Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil.
| | - A S Alcântara-Neto
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France
| | - R I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil
| | - F Z Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil
| | - V J F Freitas
- Faculdade de Veterinária, Universidade Estadual Do Ceará, Av. Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - P Mermillod
- INRA, UMR7247, Physiology and Control de Reproduction et des Comportements, INRA, CNRS, Nouzilly, France
| | - J M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24320-340, Niterói, RJ, Brazil.
| |
Collapse
|
7
|
Fujii DT, Yohannes E, Por ED, Gillette L, Beesley RD, Heitmann RJ, Chow GE, Burney RO. The proteome of human Fallopian tube lavages during the phase of embryo transit reveals candidate proteins for the optimization of preimplantation embryo culture. Hum Reprod 2021; 36:367-380. [PMID: 33355349 DOI: 10.1093/humrep/deaa333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Are there phase-specific changes in the early secretory (ES) phase human tubal lavage proteome that can inform and potentially optimize IVF culture media? SUMMARY ANSWER The human tubal lavage proteome during the ES phase relative to the menstrual phase reveals substantial differential protein abundance in pathways such as glycolysis, redox homeostasis and activation of 14-3-3 zeta-mediated signaling. WHAT IS KNOWN ALREADY The Fallopian tube is uniquely suited to the development of the preimplantation embryo as it transits the tube during the ES phase of the menstrual cycle. Euploid cleavage-stage embryo arrest may reflect incomplete recapitulation of in-vivo conditions by current media formulations. STUDY DESIGN, SIZE, DURATION Proteome-wide analysis of distal tubal lavage specimens collected from 26 healthy women undergoing open microtubal anastomosis surgery from January 2013 to January 2018 was performed. Specimens were grouped by menstrual cycle phase in order to analyze phase-specific differences in protein abundance. For the murine embryo assay, single-cell embryos (N = 482) were collected from superovulated wild type C57BL/6 female mice and cultured in microdrops over 5 days for the assessment of blastocyst development. PARTICIPANTS/MATERIALS, SETTING, METHODS Human tubal lavage specimens were processed for label-free mass spectrometry. Reported menstrual cycle day was confirmed by measuring serum hormones. Key protein targets in the ES phase were validated via immunoblot. The ES phase-specific increase in 14-3-3 zeta protein was confirmed via ELISA of conditioned media obtained from primary human Fallopian tube epithelial cell culture. A murine embryo assay was performed to investigate the impact of graduated concentrations of 14-3-3 zeta on the blastocyst development rate. MAIN RESULTS AND THE ROLE OF CHANCE Comparison of the ES and menstrual phase human tubal lavage proteomes revealed 74 differentially expressed proteins with enrichment of pathways and biological processes involved in the regulation of carbohydrate metabolism, oxidative stress and cell survival. The adapter-regulator protein 14-3-3 zeta was among the most significantly increased in the ES phase. Supplementation of embryo culture media with 14-3-3 zeta at concentrations tested did not significantly improve the murine blastocyst development. LIMITATIONS, REASONS FOR CAUTION Although select associations were recapitulated in the conditioned media from sex steroid exposed primary human tubal epithelial cells, cell culture represents an in-vitro approximation. Changes to embryo culture media, such as protein supplementation, must undergo rigorous preclinical safety testing prior to adoption for human use. WIDER IMPLICATIONS OF THE FINDINGS This study represents the first description of the human Fallopian tube lavage proteome across the menstrual cycle, revealing a unique proteomic signature during the ES phase. Although supplementation of culture media with 14-3-3 zeta at appropriate concentrations showed no significant impact on the murine blastocyst development rate, other biologically plausible candidate proteins for individual or high throughput testing strategies are identified. STUDY FUNDING/COMPETING INTEREST(S) This work was funded in part by an Army Medical Department Advanced Medical Technology Initiative grant from the United States Army Medical Research and Materiel Command's Telemedicine and Advanced Technology Research Center. There are no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- D T Fujii
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - E Yohannes
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - E D Por
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - L Gillette
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R D Beesley
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R J Heitmann
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - G E Chow
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| | - R O Burney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA 98431-1100, USA
| |
Collapse
|
8
|
García-Martínez S, Gadea J, Coy P, Romar R. Addition of exogenous proteins detected in oviductal secretions to in vitro culture medium does not improve the efficiency of in vitro fertilization in pigs. Theriogenology 2020; 157:490-497. [PMID: 32898824 DOI: 10.1016/j.theriogenology.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
This work was designed to study whether HSP70-1A, HSP90α, ezrin or PDI4, proteins previously identified in porcine oviductal secretions, have a role in zona pellucida (ZP) resistance to enzymatic digestion, in vitro fertilization (IVF) and sperm viability. In vitro matured porcine cumulus oocyte complexes were denuded and i) incubated for 1 h in TALP medium supplemented or not with each exogenous oviductal protein and in presence or absence of heparin to assess ZP digestion time by pronase; and ii) inseminated with fresh ejaculated boar spermatozoa in medium supplemented or not with each exogenous oviductal protein to assess their effect on fertilization results. Finally, spermatozoa were incubated in Tyrode's medium (0, 1 and 20 h) supplemented or not with HSP-701A, HSP-90α or ezrin, to assess simultaneously sperm viability and acrosome status by means of flow cytometry. Although all proteins increased the ZP digestion time, this increase was lower than 1 min, being ezrin the protein with a stronger effect. Presence of heparin in the medium reinforced the ZP hardening effect of ezrin and HSP-701A up to one more min, but not HSP-90α nor PDI4. Sperm penetration, but not IVF efficiency, increased when gametes were cocultured in medium containing PDIA4 whereas sperm penetration and polyspermy rates decreased in presence of ezrin and HSP proteins. This reduction was not the result of a detrimental effect of proteins on sperm viability or acrosome reaction. In conclusion, addition of exogenous proteins detected in oviductal secretions to artificial media does not reproduce the effect of adding such secretions nor improve the final efficiency of the porcine IVF system.
Collapse
Affiliation(s)
- Soledad García-Martínez
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
9
|
Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020; 225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Reproductive fluids from the female reproductive tract are gaining attention for their potential to support and optimize reproductive processes, including gamete maturation and embryo culture in vitro. Quantitative proteomics is a powerful way to decipher the proteome of reproductive tract fluids and to identify biologically relevant proteins. The present review describes proteomic strategies for analysing female reproductive fluid proteins. In addition, it considers the strategies for the preparation of oviductal, uterine and follicular fluid samples. Finally, it highlights the main results of quantitative proteomic studies, providing insights into the biological processes related to reproductive biology in farm animals. SIGNIFICANCE: Assisted reproductive technologies (ARTs) have become vitally important for farm animal breeding and much effort is going into the optimization and refinement of the techniques. There are also attempts to imitate physiological conditions by adding reproductive fluids or individual fluid proteins to improve in vitro procedures. A detailed knowledge of the reproductive fluid proteomes is indispensable. The present review summarizes the most widely used quantitative proteomic approaches for the analysis of fluids from the female reproductive tract and highlights the potential of quantitative proteomics to delineate reproductive processes and identify candidate proteins for ARTs in farm animals.
Collapse
Affiliation(s)
- Corina Itze-Mayrhofer
- Institute of Animal Breeding and Genetics, Group Molecular Reproduction IFA-Tulln, University of Veterinary Medicine, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
10
|
Teijeiro JM, Marini PE. Hormone-regulated PKA activity in porcine oviductal epithelial cells. Cell Tissue Res 2020; 380:657-667. [PMID: 32112257 DOI: 10.1007/s00441-020-03180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022]
Abstract
The oviduct is a dynamic organ that suffers changes during the oestrous cycle and modulates gamete and embryo physiology. We analyse the possible existence of Protein kinase A (PKA)-dependent hormone-regulated pathways in porcine ampulla and primary cell cultures by 2D-electrophoresis/Western blot using anti-phospho PKA substrate antibodies. Differential phosphorylation was observed for ten proteins that were identified by mass spectrometry. The results were validated for five of the proteins: Annexin A5, Calumenin, Glyoxalase I and II and Enolase I. Immunofluorescence analyses show that Calumenin, Glyoxalase II and Enolase I change their localisation in the oviductal epithelium through the oestrus cycle. The results demonstrate the existence of PKA hormone-regulated pathways in the ampulla epithelium during the oestrus cycle.
Collapse
Affiliation(s)
- Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina.
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.,Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR), Rosario, Argentina.,Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET, Rosario, Argentina
| |
Collapse
|
11
|
Banliat C, Tsikis G, Labas V, Teixeira-Gomes AP, Com E, Lavigne R, Pineau C, Guyonnet B, Mermillod P, Saint-Dizier M. Identification of 56 Proteins Involved in Embryo-Maternal Interactions in the Bovine Oviduct. Int J Mol Sci 2020; 21:ijms21020466. [PMID: 31940782 PMCID: PMC7013689 DOI: 10.3390/ijms21020466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.
Collapse
Affiliation(s)
- Charles Banliat
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Union Evolution, 35530 Noyal-sur-Vilaine, France;
| | - Guillaume Tsikis
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Valérie Labas
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
| | - Ana-Paula Teixeira-Gomes
- INRAE, Université de Tours, CHU de Tours, Plate-forme CIRE, PAIB, 37380 Nouzilly, France;
- INRAE, UMR 1282 ISP, 37380 Nouzilly, France
| | - Emmanuelle Com
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Régis Lavigne
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | - Charles Pineau
- Inserm, University of Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, 35000 Rennes, France; (E.C.); (R.L.); (C.P.)
- Protim, Inserm U1085, Irset, Campus de Beaulieu, University of Rennes 1, Proteomics Core Facility, 35000 Rennes, France
| | | | - Pascal Mermillod
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, UMR PRC, 37380 Nouzilly, France; (C.B.); (G.T.); (V.L.); (P.M.)
- Faculty of Sciences and Techniques, Department Agrosciences, University of Tours, 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-75-08
| |
Collapse
|
12
|
Composing the Early Embryonic Microenvironment: Physiology and Regulation of Oviductal Secretions. Int J Mol Sci 2019; 21:ijms21010223. [PMID: 31905654 PMCID: PMC6982147 DOI: 10.3390/ijms21010223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.
Collapse
|
13
|
Which Low-Abundance Proteins are Present in the Human Milieu of Gamete/Embryo Maternal Interaction? Int J Mol Sci 2019; 20:ijms20215305. [PMID: 31653120 PMCID: PMC6861935 DOI: 10.3390/ijms20215305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
The improvement of the embryo culture media is of high relevance due to its influence on successful implantation rates, pregnancy, neonatal outcomes, and potential effects in adult life. The ideal conditions for embryo development are those naturally occurring in the female reproductive tract, i.e., the oviductal and uterine fluids. To shed light on the differences between chemical and natural media, we performed the first comparative study of the low abundance proteins in plasma, uterine, and oviductal fluid collected, simultaneously, from healthy and fertile women that underwent a salpingectomy. The rationale for this design derives from the fact that high-abundant proteins in these fluids are usually those coming from blood serum and frequently mask the detection of low abundant proteins with a potentially significant role in specific processes related to the embryo–maternal interaction. The proteomic analysis by 1D-nano LC ESI-MSMS detected several proteins in higher amounts in oviductal fluid when compared to uterine and plasma samples (RL3, GSTA1, EZRI, DPYSL3, GARS, HSP90A). Such oviductal fluid proteins could be a target to improve fertilization rates and early embryo development if used in the culture media. In conclusion, this study presents a high-throughput analysis of female reproductive tract fluids and contributes to the knowledge of oviductal and uterine secretome.
Collapse
|