1
|
Ge Q, Zhao J, Qu F. Investigating the progression of preeclampsia through a comprehensive analysis of genes associated with per- and polyfluoroalkyl substances. Toxicol Mech Methods 2024; 34:444-453. [PMID: 38166544 DOI: 10.1080/15376516.2023.2299485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are synthetic chemicals utilized in the production of various products that possess water and dirt-repellent properties. Exposure to PFAS has been linked to numerous diseases, such as cancer and preeclampsia (PE). However, whether PFAS contributes to the advancement of PE remains uncertain. In this study, we conducted an extensive bioinformatics analysis using the Comparative Toxicogenomics Database (CTD) and Gene Expression Omnibus (GEO) databases, leading us to discover a connection between PE and four specific PFAS. Moreover, further examination revealed that six genes associated with PFAS exhibited significant diagnostic potential for individuals with PE. By employing receiver operating characteristic (ROC) curves, our PFAS-related gene-based nomogram model demonstrated outstanding predictive efficacy for diagnosing PE. Immune infiltration analysis showed that six PFAS-related genes were significantly associated with the level of immune cell infiltration. The expression of PFAS-related genes in PE patients was confirmed by collecting clinical samples. This research has offered fresh perspectives on comprehending the impact of PFAS on PE, drawing attention to the connection between environmental factors and the risks and development of PE.
Collapse
Affiliation(s)
- Qiuyan Ge
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | - Ju Zhao
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| | - Fujuan Qu
- Department of Obstetrics, Nantong Tongzhou People's Hospital, Nantong, China
| |
Collapse
|
2
|
Psilopatis I, Vrettou K, Fleckenstein FN, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Preeclampsia. Cells 2023; 12:cells12040647. [PMID: 36831316 PMCID: PMC9954398 DOI: 10.3390/cells12040647] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Preeclampsia is a common pregnancy-related hypertensive disorder. Often presenting as preexisting or new-onset hypertension complicated by proteinuria and/or end-organ dysfunction, preeclampsia significantly correlates with maternal and perinatal morbidity and mortality. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins that regulate gene expression. In order to investigate the role of PPARs in the pathophysiology of preeclampsia, we conducted a literature review using the MEDLINE and LIVIVO databases. The search terms "peroxisome proliferator-activated receptor", "PPAR", and "preeclampsia" were employed and we were able to identify 35 relevant studies published between 2002 and 2022. Different study groups reached contradictory conclusions in terms of PPAR expression in preeclamptic placentae. Interestingly, PPARγ agonists alone, or in combination with well-established pharmaceutical agents, were determined to represent novel, potent anti-preeclamptic treatment alternatives. In conclusion, PPARs seem to play a significant role in preeclampsia.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Florian Nima Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
- Correspondence: (F.N.F.); (S.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Correspondence: (F.N.F.); (S.T.)
| |
Collapse
|
3
|
Hao K, Wang J, Li Z, Chen H, Jia B, Hu G. PPARγ/mTOR Regulates the Synthesis and Release of Prostaglandins in Ovine Trophoblast Cells in Early Pregnancy. Vet Sci 2022; 9:649. [PMID: 36423098 PMCID: PMC9694237 DOI: 10.3390/vetsci9110649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 09/16/2023] Open
Abstract
Trophoblast cells synthesize and secrete prostaglandins (PGs), which are essential for ruminants in early gestation to recognize pregnancy. Hormones in the intrauterine environment play an important role in regulating PGs synthesis during implantation, but the underlying mechanism remains unclear. In this study, co-treatment of sheep trophoblast cells (STCs) with progesterone (P4), estradiol (E2), and interferon-tau (IFN-τ) increased the ratio of prostaglandin E2 (PGE2) to prostaglandin F2α (PGF2α) and upregulated peroxisome proliferator-activated receptor γ (PPARγ) expression, while inhibiting the mechanistic target of rapamycin (mTOR) pathway and activating cellular autophagy. Under hormone treatment, inhibition of PPARγ activity decreased the ratio of PGE2/PGF2α and cellular activity, while activating expression of the mTOR downstream marker-the phosphorylation of p70S6K (p-p70S6K). We also found that the PPARγ/mTOR pathway played an important role in regulating trophoblast cell function. Inhibition of the mTOR pathway by rapamycin increased the ratio of PGE2/PGF2α and decreased the expression of apoptosis-related proteins after inhibiting PPARγ activity. In conclusion, our findings provide new insights into the molecular mechanism of prostaglandin regulation of trophoblast cells in sheep during early pregnancy, indicating that the PPARγ/mTOR pathway plays an important role in PGs secretion and cell viability.
Collapse
Affiliation(s)
| | | | | | | | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Ye Q, Zeng X, Cai S, Qiao S, Zeng X. Mechanisms of lipid metabolism in uterine receptivity and embryo development. Trends Endocrinol Metab 2021; 32:1015-1030. [PMID: 34625374 DOI: 10.1016/j.tem.2021.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023]
Abstract
Metabolic regulation plays important roles in embryo development and uterine receptivity during early pregnancy, ultimately influencing pregnancy efficiency in mammals. The important roles of lipid metabolism during early pregnancy have not been fully understood. Here, we described the regulatory roles of phospholipid, sphingolipid, and cholesterol metabolism on early embryo development, implantation, and uterine receptivity through production of cannabinoids, prostaglandins, lysophosphatidic acid, sphingosine-1-phosphate, and steroid hormones. Moreover, the impacts of lipids and fatty acids on embryo development potential and the related epigenetic modifications are also discussed. This review aims to elucidate the modulations of lipid metabolism on uterine receptivity and embryo development, contributing to novel strategies to establish dietary balanced lipids and fatty acids for reducing early embryo loss.
Collapse
Affiliation(s)
- Qianhong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, P. R. China; Beijing Key Laboratory of Biofeed Additives, Beijing 100193, P. R. China.
| |
Collapse
|
5
|
Guo Q, Kawahata I, Degawa T, Ikeda-Matsuo Y, Sun M, Han F, Fukunaga K. Fatty Acid-Binding Proteins Aggravate Cerebral Ischemia-Reperfusion Injury in Mice. Biomedicines 2021; 9:529. [PMID: 34068550 PMCID: PMC8150391 DOI: 10.3390/biomedicines9050529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Fatty acid-binding proteins (FABPs) regulate the intracellular dynamics of fatty acids, mediate lipid metabolism and participate in signaling processes. However, the therapeutic efficacy of targeting FABPs as novel therapeutic targets for cerebral ischemia is not well established. Previously, we synthesized a novel FABP inhibitor, i.e., FABP ligand 6 [4-(2-(5-(2-chlorophenyl)-1-(4-isopropylphenyl)-1H-pyrazol-3-yl)-4-fluorophenoxy)butanoic acid] (referred to here as MF6). In this study, we analyzed the ability of MF6 to ameliorate transient middle cerebral artery occlusion (tMCAO) and reperfusion-induced injury in mice. A single MF6 administration (3.0 mg/kg, per os) at 0.5 h post-reperfusion effectively reduced brain infarct volumes and neurological deficits. The protein-expression levels of FABP3, FABP5 and FABP7 in the brain gradually increased after tMCAO. Importantly, MF6 significantly suppressed infarct volumes and the elevation of FABP-expression levels at 12 h post-reperfusion. MF6 also inhibited the promotor activity of FABP5 in human neuroblastoma cells (SH-SY5Y). These data suggest that FABPs elevated infarct volumes after ischemic stroke and that inhibiting FABPs ameliorated the ischemic injury. Moreover, MF6 suppressed the inflammation-associated prostaglandin E2 levels through microsomal prostaglandin E synthase-1 expression in the ischemic hemispheres. Taken together, the results imply that the FABP inhibitor MF6 can potentially serve as a neuroprotective therapeutic for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Tomohide Degawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-Machi, Kanazawa 920-1181, Japan;
| | - Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| | - Feng Han
- School of Pharmacy, Nanjing Medical School, Nanjing 211166, China;
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; (Q.G.); (I.K.); (T.D.); (M.S.)
| |
Collapse
|
6
|
Role of Peroxisome Proliferator-Activated Receptors (PPARs) in Trophoblast Functions. Int J Mol Sci 2021; 22:ijms22010433. [PMID: 33406768 PMCID: PMC7795665 DOI: 10.3390/ijms22010433] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARα, PPARβ/δ, and PPARγ) belong to the transcription factor family, and they are highly expressed in all types of trophoblast during pregnancy. The present review discusses currently published papers that are related to the regulation of PPARs via lipid metabolism, glucose metabolism, and amino acid metabolism to affect trophoblast physiological conditions, including differentiation, maturation, secretion, fusion, proliferation, migration, and invasion. Recent pieces of evidence have proven that the dysfunctions of PPARs in trophoblast lead to several related pregnancy diseases such as recurrent miscarriage, preeclampsia, intrauterine growth restriction, and gestational diabetes mellitus. Moreover, the underlying mechanisms of PPARs in the control of these processes have been discussed as well. Finally, this review's purposes are to provide more knowledge about the role of PPARs in normal and disturbed pregnancy with trophoblast, so as to find PPAR ligands as a potential therapeutic target in the treatment and prevention of adverse pregnancy outcomes.
Collapse
|