1
|
Zhang L, Xu P, Liu B, Yu B. Chemical Synthesis of Fucosylated Chondroitin Sulfate Oligosaccharides. J Org Chem 2020; 85:15908-15919. [PMID: 32567313 DOI: 10.1021/acs.joc.0c01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fucosylated chondroitin sulfates (FuCSs) are a unique type of polysaccharides occurring in sea cucumber that show a variety of biological activities. In particular, well-defined FuCS oligosaccharides, consisting of a trisaccharide repeating unit of β-d-GalNAc(4,6-diS)-(1→4)-[α-l-Fuc(2,4-diS)-(1→3)]-β-d-GlcUA, display potent anticoagulant activity via selective inhibition of the intrinsic tenase, which could be developed into anticoagulant drugs without bleeding risk. Herein, we report an effective approach to the synthesis of FuCS oligosaccharides, as demonstrated by the successful elaboration of FuCS tri-, hexa-, and nonasaccharides. The syntheses employ an orthogonally protected trisaccharide as a pivotal building block that can be readily converted into the donor and acceptor for glycosidic coupling. In addition, the internal patterns of protecting groups, involving N-trichloroacetyl for N-acetyl group, benzylidene and benzyl groups for sulfonated hydroxyl groups, and benzoyl and methyl esters for free hydroxyl and carboxylic acid, respectively, ensure stereoselective formation of the glycosidic linkages and sequential transformation into the desired FuCS oligosaccharides.
Collapse
Affiliation(s)
- Liangzhong Zhang
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024,, China
| | - Benzhang Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024,, China
| |
Collapse
|
2
|
Highly purified fucosylated chondroitin sulfate oligomers with selective intrinsic factor Xase complex inhibition. Carbohydr Polym 2019; 222:115025. [PMID: 31320079 DOI: 10.1016/j.carbpol.2019.115025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Fucosylated chondroitin sulfate (FCS) oligosaccharides of specific molecular weight have shown potent anticoagulant activities with selectivity towards intrinsic factor Xase complex. However, the preparation of FCS oligosaccharides by traditional methods requires multiple purification steps consuming large amounts of time and significant resources. The current study focuses on developing a method for the rapid preparation of FCS oligomers from sea cucumber Pearsonothuria graeffei having 6-18 saccharide residues. The key steps controlling molecular weight (Mw) and purity of these FCS oligomers were evaluated. Structural analysis showed the resulting FCS oligomers were primarily l-Fuc3,4diS-α1,3-d-GlcA-β1,3-(d-GalNAc4,6diS-β1,4-[l-Fuc3,4diS-α1,3-]d-GlcA-β1,3-)nd-anTal-ol4,6diS (n = 1˜5) accompanied by partial de-fucosylation and/or de-sulfation. In vitro and in vivo experiments demonstrate that these FCS oligomers selectively inhibit intrinsic factor Xase complex and exhibit remarkable antithrombotic activity without hemorrhagic and hypotension side effects. This method is suitable for large-scale preparation of FCS oligosaccharides as clinical anticoagulants.
Collapse
|
3
|
Khotimchenko Y. Pharmacological Potential of Sea Cucumbers. Int J Mol Sci 2018; 19:E1342. [PMID: 29724051 PMCID: PMC5983632 DOI: 10.3390/ijms19051342] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines.
Collapse
Affiliation(s)
- Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia.
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
4
|
Yan L, Li J, Wang D, Ding T, Hu Y, Ye X, Linhardt RJ, Chen S. Molecular size is important for the safety and selective inhibition of intrinsic factor Xase for fucosylated chondroitin sulfate. Carbohydr Polym 2017; 178:180-189. [PMID: 29050584 DOI: 10.1016/j.carbpol.2017.09.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/22/2022]
Abstract
Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (FCS-Ib) showed potent anticoagulant activities without selectivity. The present study focused on developing safe FCS-Ib oligomers showing selective inhibition of intrinsic factor Xase (anti-FXase) prepared through partial N-deacetylation-deaminative cleavage. The N-deacetylation degree was regulated by reaction time, controlling the resulting oligomer distribution. Structure analysis confirmed the selectivity of degradation, and 12 high purity fractions with trisaccharide-repeating units were separated. In vitro anticoagulant assays indicated a decrease in molecular weight (Mw) dramatically reduced activated partial thromboplastin time (APTT), thrombin time (TT), AT-dependent anti-FIIa and anti-FXa activities, while the oligomers retained potent anti-FXase activity until they fell below 3kDa. Meanwhile, human FXII activation and platelet aggregation were markedly reduced with decreasing Mw and were moderate when under 12.0kDa. Thus, fragments of 3-12.0kDa should be safe and effective as selective inhibitors of intrinsic tenase complex for application as clinical anticoagulants.
Collapse
Affiliation(s)
- Lufeng Yan
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Junhui Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Danli Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Tian Ding
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Yaqin Hu
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Xingqian Ye
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies and Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, United States
| | - Shiguo Chen
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China.
| |
Collapse
|
5
|
Li J, Li S, Yan L, Ding T, Linhardt RJ, Yu Y, Liu X, Liu D, Ye X, Chen S. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size. Eur J Med Chem 2017; 139:191-200. [PMID: 28800457 DOI: 10.1016/j.ejmech.2017.07.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023]
Abstract
Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs.
Collapse
Affiliation(s)
- Junhui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Lufeng Yan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Tian Ding
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Yanlei Yu
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Xinyue Liu
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Donghong Liu
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shiguo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Li JH, Li S, Zhi ZJ, Yan LF, Ye XQ, Ding T, Yan L, Linhardt RJ, Chen SG. Depolymerization of Fucosylated Chondroitin Sulfate with a Modified Fenton-System and Anticoagulant Activity of the Resulting Fragments. Mar Drugs 2016; 14:E170. [PMID: 27657094 PMCID: PMC5039541 DOI: 10.3390/md14090170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Fucosylated chondroitin sulfate (fCS) from sea cucumber Isostichopus badionotus (fCS-Ib) with a chondroitin sulfate type E (CSE) backbone and 2,4-O-sulfo fucose branches has shown excellent anticoagulant activity although has also show severe adverse effects. Depolymerization represents an effective method to diminish this polysaccharide's side effects. The present study reports a modified controlled Fenton system for degradation of fCS-Ib and the anticoagulant activity of the resulting fragments. Monosaccharides and nuclear magnetic resonance (NMR) analysis of the resulting fragments indicate that no significant chemical changes in the backbone of fCS-Ib and no loss of sulfate groups take place during depolymerization. A reduction in the molecular weight of fCS-Ib should result in a dramatic decrease in prolonging activated partial thromboplastin time and thrombin time. A decrease in the inhibition of thrombin (FIIa) by antithromin III (AT III) and heparin cofactor II (HCII), and the slight decrease of the inhibition of factor X activity, results in a significant increase of anti-factor Xa (FXa)/anti-FIIa activity ratio. The modified free-radical depolymerization method enables preparation of glycosaminoglycan (GAG) oligosaccharides suitable for investigation of clinical anticoagulant application.
Collapse
Affiliation(s)
- Jun-Hui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Shan Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zi-Jian Zhi
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lu-Feng Yan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Xing-Qian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Tian Ding
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lei Yan
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Robert John Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Shi-Guo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| |
Collapse
|
7
|
Interactions between depolymerized fucosylated glycosaminoglycan and coagulation proteases or inhibitors. Thromb Res 2016; 146:59-68. [PMID: 27611497 DOI: 10.1016/j.thromres.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/12/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023]
Abstract
Fucosylated glycosaminoglycan (FG) is a structurally novel glycosaminoglycan derivative, and it has potent anticoagulant activity. Depolymerized FG (dFG) is a selective factor Xase (FXase, FIXa-FVIIIa complex) inhibitor and it has antithrombotic action without major bleeding risks. In this study, we report the effects of dFG-3 (Mw ~14kDa) on the catalysis rates of factor IIa (FIIa), factor Xa (FXa) and factor IXa (FIXa) inhibition by antithrombin (AT), and the kinetic of the interactions between coagulation proteases or inhibitors and dFG-3 were also studied using biolayer interferometry (BLI) technology. We found that dFG-3 had much weaker catalysis activity of coagulation proteases inhibition by AT compared with heparin (UFH). The binding affinity of AT bound to dFG-3 was lower than UFH, and the UFH-AT interaction fitted well with biphasic-binding model while dFG-3-AT interaction was monophasic-binding, suggesting dFG-3 might not have allosteric activation effect on AT. The results are consistent with AT-independent inhibitory activities of dFG-3. dFG-3 could strongly bind to FIXa with much higher affinity than UFH, further explained the reason for its potent FXase inhibitory activity. Additionally, the binding ability of dFG-3 and FIXa decreased with decreasing molecular, and the fucose side chains and carboxyl groups of dFG-3 might be required for its high affinity binding with FIXa. Our data supports further the investigation of dFG-3 as a promising anticoagulant drug inhibiting the intrinsic FXase by binding to FIXa.
Collapse
|
8
|
Sabbione AC, Rinaldi G, Añón MC, Scilingo AA. Antithrombotic Effects of Amaranthus hypochondriacus Proteins in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:19-27. [PMID: 26627100 DOI: 10.1007/s11130-015-0517-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a major cause of disability and premature death throughout the world. Diets with antithrombotic components offer a convenient and effective way of preventing and reducing CVD incidence. The aim of the present work was to assess in vivo and ex vivo effects of Amaranthus hypochondriacus proteins on platelet plug formation and coagulation cascade. Amaranth proteins were orally administrated to rats (AG, 8 animals) and bleeding time was determined showing no significant difference compared with control rats (CG, 7 animals). However, results show a strong tendency, suggesting that amaranth proteins are involved in the inhibition of thrombus formation. Non-anticoagulated blood extracted from animals was analyzed with the hemostatometer, where AG parameters obtained were twice the values showed by CG. The clotting tests, thrombin time (TT) and activated partial thromboplastin time (APTT), presented a 17 and 14% clotting formation increase respectively when comparing AG with CG. The ex-vivo assays confirm the hypothesis inferring that amaranth proteins are a potential antithrombotic agent.
Collapse
Affiliation(s)
- Ana Clara Sabbione
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116, 1900, La Plata, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), La Plata, Argentina
| | - Gustavo Rinaldi
- Centro de Investigaciones Cardiovasculares (CIC), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Avenida 60 y 120 2° piso, La Plata, Argentina
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116, 1900, La Plata, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), La Plata, Argentina
| | - Adriana A Scilingo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Calle 47 y 116, 1900, La Plata, Argentina.
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT, La Plata, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), La Plata, Argentina.
| |
Collapse
|
9
|
Wu M, Wen D, Gao N, Xiao C, Yang L, Xu L, Lian W, Peng W, Jiang J, Zhao J. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Eur J Med Chem 2015; 92:257-69. [DOI: 10.1016/j.ejmech.2014.12.054] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022]
|
10
|
Pomin VH. Holothurian fucosylated chondroitin sulfate. Mar Drugs 2014; 12:232-54. [PMID: 24413804 PMCID: PMC3917272 DOI: 10.3390/md12010232] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 11/16/2022] Open
Abstract
Fucosylated chondroitin sulfate (FucCS) is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| |
Collapse
|
11
|
Zhao L, Lai S, Huang R, Wu M, Gao N, Xu L, Qin H, Peng W, Zhao J. Structure and anticoagulant activity of fucosylated glycosaminoglycan degraded by deaminative cleavage. Carbohydr Polym 2013; 98:1514-23. [DOI: 10.1016/j.carbpol.2013.07.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/05/2013] [Accepted: 07/27/2013] [Indexed: 10/26/2022]
|
12
|
Fucosylated chondroitin sulfate inhibits plasma thrombin generation via targeting of the factor IXa heparin-binding exosite. Blood 2009; 114:3092-100. [PMID: 19414859 DOI: 10.1182/blood-2009-02-203661] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chondroitin sulfate with antithrombin-independent antithrombotic properties. Heparin cofactor II (HCII)-dependent and -independent mechanisms for DHG inhibition of plasma thrombin generation were evaluated. When thrombin generation was initiated with 0.2 pM tissue factor (TF), the half maximal effective concentration (EC(50)) for DHG inhibition was identical in mock- or HCII-depleted plasma, suggesting a serpin-independent mechanism. In the presence of excess TF, the EC(50) for DHG was increased 13- to 27-fold, suggesting inhibition was dependent on intrinsic tenase (factor IXa-factor VIIIa) components. In factor VIII-deficient plasma supplemented with 700 pM factor VIII or VIIIa, and factor IX-deficient plasma supplemented with plasma-derived factor IX or 100 pM factor IXa, the EC(50) for DHG was similar. Thus, cofactor and zymogen activation did not contribute to DHG inhibition of thrombin generation. Factor IX-deficient plasma supplemented with mutant factor IX(a) proteins demonstrated resistance to DHG inhibition of thrombin generation [factor IX(a) R233A > R170A > WT] that inversely correlated with protease-heparin affinity. These results replicate the effect of these mutations with purified intrinsic tenase components, and establish the factor IXa heparin-binding exosite as the relevant molecular target for inhibition by DHG. Glycosaminoglycan-mediated intrinsic tenase inhibition is a novel antithrombotic mechanism with physiologic and therapeutic applications.
Collapse
|
13
|
Rahgozar S, Giannakopoulos B, Yan X, Wei J, Cheng Qi J, Gemmell R, Krilis SA. Beta2-glycoprotein I protects thrombin from inhibition by heparin cofactor II: Potentiation of this effect in the presence of anti-β2-glycoprotein I autoantibodies. ACTA ACUST UNITED AC 2008; 58:1146-55. [DOI: 10.1002/art.23387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Huang J, Wang S, Luo X, Xie Y, Shi X. Cinnamaldehyde reduction of platelet aggregation and thrombosis in rodents. Thromb Res 2007; 119:337-42. [PMID: 16626787 DOI: 10.1016/j.thromres.2006.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 01/31/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Cinnamaldehyde (CA) has been reported to inhibit in vitro aggregation in human and rabbit platelets; however, little is known about the antithrombotic activities of CA in vivo. MATERIALS AND METHODS We tested the effects of CA on collagen- or thrombin-induced aggregation of rat platelets in vitro. Hemorrhage and coagulation times of mice treated with CA by the tail-cutting or slide method were measured. We also tested the life-saving effects of CA on experimental models of thrombosis in mice and rats. The anti-platelet effects of CA were examined in rats. RESULTS CA inhibited collagen- and thrombin-induced platelet aggregation in vitro in a concentration-dependent manner. In mice, CA administration (250, 500 mg/kg orally and 50, 100 mg/kg i.p.) markedly prolonged hemorrhage and coagulation times and effectively reduced the mortality rate of collagen-epinephrine-induced acute pulmonary thromboembolism. In an arteriovenous shunt thrombosis rat model, the CA administration (250, 500 mg/kg orally and 50, 100 mg/kg i.p.) for 10 days dose-dependently decreased thrombus weight. Administration of CA also significantly inhibited collagen-induced platelet aggregation in the rat platelet-rich plasma (PRP). CONCLUSIONS The results demonstrate that CA may be a promising antithrombotic agent, and its antithrombotic activity may be due to anti-platelet aggregation activity in vitro and in vivo.
Collapse
Affiliation(s)
- Jingqun Huang
- Institute of Materia Medica, School of pharmacy, Fourth Military Medical University, 17 Changlexi Street, Xi'an 710032, China
| | | | | | | | | |
Collapse
|