1
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
2
|
Kouta A, Hoppensteadt D, Bontekoe E, Jeske W, Duff R, Cera L, Fareed J. Studies on Tissue Factor Pathway Inhibitor Antigen Release by Bovine, Ovine and Porcine Heparins Following Intravenous Administration to Non-Human Primates. Clin Appl Thromb Hemost 2021; 26:1076029620951851. [PMID: 33034200 PMCID: PMC7549172 DOI: 10.1177/1076029620951851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Unfractionated heparin (UFH) is a sulfated glycosaminoglycan that
consists of repeating disaccharides, containing iduronic acid (or
glucuronic acid) and glucosamine, exhibiting variable degrees of
sulfation. UFHs release tissue factor pathway inhibitor (TFPI) which
inhibits the extrinsic pathway of coagulation by inactivating factor
Xa and the factor VIIa/TF complex. Most heparins used clinically are
derived from porcine intestinal mucosa however, heparins can also be
derived from tissues of bovine and ovine origin. Currently there are
some concerns about the shortage of the porcine heparins as they are
widely used in the manufacturing of the low molecular weight heparins
(LMWHs). Moreover, due to cultural and religious reasons in some
countries, alternative sources of heparins are needed. Bovine mucosal
heparins (BMH) are currently being developed for re-introduction to
the US market for both medical and surgical indications. Compared to
porcine mucosal heparin (PMH), BMH exhibits a somewhat weaker
anti-coagulant activity. In this study, we determined the TFPI antigen
level following administration of various dosages of UFHs from
different origins. These studies demonstrated that IV administration
of equigravemetric dosages of PMH and ovine mucosal heparin (OMH) to
non-human primates resulted in comparable TFPI antigen release from
endothelial cells. In addition, the levels of TFPI were significantly
higher than TFPI antigen levels observed after BMH administration.
Potency adjusted dosing resulted in comparable TFPI release profiles
for all 3 heparins. Therefore, such dosing may provide uniform levels
of anticoagulation for the parenteral indications for UFHs. These
observations warrant further clinical validation in specific
indications.
Collapse
Affiliation(s)
- Ahmed Kouta
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Debra Hoppensteadt
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Emily Bontekoe
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Richard Duff
- Comparative Medicine Facility, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Lee Cera
- Comparative Medicine Facility, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| | - Jawed Fareed
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, Maywood, IL, USA
| |
Collapse
|
3
|
Amiral J, Amiral C, Dunois C. Optimization of Heparin Monitoring with Anti-FXa Assays and the Impact of Dextran Sulfate for Measuring All Drug Activity. Biomedicines 2021; 9:700. [PMID: 34205548 PMCID: PMC8235539 DOI: 10.3390/biomedicines9060700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
Heparins, unfractionated or low molecular weight, are permanently in the spotlight of both clinical indications and laboratory monitoring. An accurate drug dosage is necessary for an efficient and safe therapy. The one-stage kinetic anti-FXa assays are the most widely and universally used with full automation for large series, without needing exogenous antithrombin. The WHO International Standards are available for UFH and LMWH, but external quality assessment surveys still report a high inter-assay variability. This heterogeneity results from the following: assay formulation, designed without or with dextran sulfate to measure all heparin in blood circulation; calibrators for testing UFH or LMWH with the same curve; and automation parameters. In this study, various factors which impact heparin measurements are reviewed, and we share our experience to optimize assays for testing all heparin anticoagulant activities in plasma. Evidence is provided on the usefulness of low molecular weight dextran sulfate to completely mobilize all of the drug present in blood circulation. Other key factors concern the adjustment of assay conditions to obtain fully superimposable calibration curves for UFH and LMWH, calibrators' formulations, and automation parameters. In this study, we illustrate the performances of different anti-FXa assays used for testing heparin on UFH or LMWH treated patients' plasmas and obtained using citrate or CTAD anticoagulants. Comparable results are obtained only when the CTAD anticoagulant is used. Using citrate as an anticoagulant, UFH is underestimated in the absence of dextran sulfate. Heparin calibrators, adjustment of automation parameters, and data treatment contribute to other smaller differences.
Collapse
Affiliation(s)
| | - Cédric Amiral
- HYPHEN BioMed, 95000 Neuville sur Oise, France; (C.A.); (C.D.)
| | - Claire Dunois
- HYPHEN BioMed, 95000 Neuville sur Oise, France; (C.A.); (C.D.)
| |
Collapse
|
4
|
Poredoš P, Poredoš P, Jezovnik MK. Factors influencing recanalization of thrombotic venous occlusions. VASA 2020; 49:17-22. [DOI: 10.1024/0301-1526/a000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary. The outcome of a thrombotic vessel occlusion is related to the resolution of thrombus and restitution of blood flow. Thrombus formation simultaneously activates an enzymatic process that mediates endogenous fibrinolysis to maintain vessel patency. The balance between coagulation and fibrinolysis determines the extent of thrombus formation, its resolution, and clinical outcome. Endogenic fibrinolysis is frequently unable to overcome coagulation and to resolve the thrombus. Therefore, for a complete resolution of thrombus in an acute phase, exogenic fibrinolytic agents are needed. Currently, tissue plasminogen activator (tPA) is most frequently used for therapeutic thrombolysis. Also, heparins, particularly low-molecular-weight heparins and direct oral anticoagulants which are known as anticoagulant drugs, have some pro-fibrinolytic properties. Besides the extent and age of a clot, different other factors influence the lysis of thrombus. Thrombus structure is one of the most important determinants of thrombus lysis. The concentration of thrombolytic agent (tPA) around and inside of thrombus importantly determines clot lysis velocity. Further, flow-induced mechanical forces which stimulate the transport of thrombolytic agent into the clot influence thrombolysis. Inflammation most probably represents a basic pathogenetic mechanism of activation of coagulation and influences the activity of the fibrinolytic system. Inflammation increases tissue factor release, platelet activity, fibrinogen concentration and inhibits fibrinolysis by increasing plasminogen activator inhibitor 1. Therefore, recanalization of a thrombotic vessel occlusion is inversely related to levels of some circulating inflammatory agents. Consequently, inhibition of inflammation with anti-inflammatory drugs may improve the efficacy of prevention of thromboembolic events and stimulate recanalization of thrombotic occlusions of veins.
Collapse
Affiliation(s)
- Pavel Poredoš
- Department of Vascular Disease, University Medical Centre Ljubljana, Slovenia
| | - Peter Poredoš
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Slovenia
| | - Mateja Kaja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Centre Houston, Texas, USA
| |
Collapse
|
5
|
Monakhova YB, Rubtsova EM, Diehl BWK, Mushtakova SP. Nuclear Magnetic Resonance Spectrometry Combined with Chemometric Methods of Data Processing as a Method for the Study of the Composition and Properties of Heparin Preparations. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ofosu F. A review of the two major regulatory pathways for non-proprietary low-molecular-weight heparins. Thromb Haemost 2017; 107:201-14. [DOI: 10.1160/th11-06-0409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/12/2011] [Indexed: 11/05/2022]
Abstract
SummaryWith the expiry or pending expiry of originator low-molecular-weight heparin (LMWH) patents, pharmaceutical companies have invested in developing non-proprietary versions of LMWHs. LMWHs are manufactured by depolymerising highly purified unfractionated heparin. In contrast to traditional synthetic drugs with well-defined chemical structures, LMWHs contain complex oligosaccharide mixtures and the different manufacturing processes for LMWHs add to the heterogeneity in their physicochemical properties such that the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) consider existing originator LMWHs to be distinct medicinal entities that are not clinically interchangeable. The FDA views LMWHs as drugs and has approved two non-proprietary (generic) LMWHs, using the Abbreviated New Drug Application pathway. In contrast, the World Health Organization and the EMA view LMWHs as biological medicines. Therefore, the EMA and also the Scientific and Standardization Subcommittee on Anticoagulation of the International Society on Thrombosis and Haemostasis and the South Asian Society of Atherosclerosis and Thrombosis have all published specific guidelines for assessing non-proprietary (biosimilar) LMWHs. This manuscript reviews why there are two distinct pathways for approving non-proprietary LMWHs. Available literature on non-proprietary LMWHs approved in some jurisdictions is also reviewed in order to assess whether they satisfy the requirements for LMWHs in the three guidance documents. The review also highlights some of the significant difficulties the two pathways pose for manufacturers and an urgent need to develop a consensus governing the manufacture and regulation of non-proprietary LMWHs to make them more widely available.
Collapse
|
7
|
Chandarajoti K, Liu J, Pawlinski R. The design and synthesis of new synthetic low-molecular-weight heparins. J Thromb Haemost 2016; 14:1135-45. [PMID: 26990516 PMCID: PMC4907857 DOI: 10.1111/jth.13312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Low-molecular-weight heparin (LMWH) has remained the most favorable form of heparin in clinics since the 1990s owing to its predictable pharmacokinetic properties. However, LMWH is mainly eliminated through the kidney, which limits its use in renal-impaired patients. In addition, the anticoagulant activity of LMWH is only partially neutralized by protamine. LMWH is obtained from a full-length, highly sulfated polysaccharide harvested from porcine mucosal tissue. The depolymerization involved in LMWH production generates a broad distribution of LMWH fragments (6-22 sugar residues). This, combined with the various methods used to produce commercial LMWHs, results in variable pharmacological and pharmacokinetic properties. An alternative chemoenzymatic approach offers a method for the synthesis of LMWH that has the potential to overcome the limitations of current LMWHs. This review summarizes the application of a chemoenzymatic approach to generate LMWH and the rationale for development of a synthetic LMWH.
Collapse
Affiliation(s)
- K Chandarajoti
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Pawlinski
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Summerhayes R. Laboratory methods for the assay of tissue factor pathway inhibitor in human plasma. Methods Mol Biol 2013; 992:289-300. [PMID: 23546722 DOI: 10.1007/978-1-62703-339-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tissue factor pathway inhibitor (TFPI) is being assayed with increasing frequency by researchers attempting to further understand the complexities of the coagulation system. There are a number of methods available for measurement of TFPI; however immunological measurement by ELIZA is the most common assay used. There are a number of commercial kits available for this assay and close attention to detail is critical for accurate results.
Collapse
Affiliation(s)
- Robyn Summerhayes
- Haematology Research Laboratory, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
9
|
Effect of cellulose sulfate on the induction of hydrolysis of plasmin-specific chromogenic substrate and anticoagulant activity in rabbit blood plasma. Pharm Chem J 2012. [DOI: 10.1007/s11094-012-0739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The molecular basis for the anticoagulant action of heparin lies in its ability to bind to and enhance the inhibitory activity of the plasma protein antithrombin against several serine proteases of the coagulation system, most importantly factors IIa (thrombin), Xa and IXa. Two major mechanisms underlie heparin's potentiation of antithrombin. The conformational changes induced by heparin binding cause both expulsion of the reactive loop and exposure of exosites of the surface of antithrombin, which bind directly to the enzyme target; and a template mechanism exists in which both inhibitor and enzyme bind to the same heparin molecule. The relative importance of these two modes of action varies between enzymes. In addition, heparin can act through other serine protease inhibitors such as heparin co-factor II, protein C inhibitor and tissue factor plasminogen inhibitor. The antithrombotic action of heparin in vivo, though dominated by anticoagulant mechanisms, is more complex, and interactions with other plasma proteins and cells play significant roles in the living vasculature.
Collapse
Affiliation(s)
- Elaine Gray
- National Institute for Biological Standards and Control, Potter's Bar, Hertfordshire, UK.
| | | | | |
Collapse
|
12
|
Abstract
PURPOSE Anticoagulant tissue factor pathway inhibitor (TFPI) is released from its endothelial stores by heparin, which may lead to its untoward depletion. We investigated the effects of sulodexide--a commercially available mixture of heparan and dermatan sulfate, on plasma TFPI release and depletion. MATERIAL AND METHODS An open-label pilot trial of intravenous and/or oral sulodexide effects on plasma immunoreactive total TFPI antigen level was performed in 11 healthy men. The drug was initially administered i.v. at a single dose of 120 mg, thenorally for 12 days (50 mg b.i.d), and again by i.v route after 2 weeks. RESULTS Sulodexide injections induced marked increases in plasma TFPI; they were more pronounced on day 14 than on study initiation (3-fold vs. 2-fold after 10 min) and still evident after 120 min. TFPI levels did not change when measured at 120 min after oral sulodexide administration. The percentage increment in plasma TFPI after 10 min from initial sulodexide injection inversely correlated with baseline TFPI levels (r = - 0.664, P = 0.026). On day 14, the association became strong (r = - 0.970, P < 0.0001) and evident also after 120 min (r = - 0.810, P < 0.002). Baseline TFPI levels decreased over the trial; on day 14 they were lower by 34% than on study initiation (P = 0.001). CONCLUSIONS TFPI release by i.v. sulodexide and its depletion during oral administration of this heparinoid compound constitute novel and likely important hemostatic effects of the drug.
Collapse
|
13
|
Yao JL, Ryan CK, Francis CW, Kohli M, Taubman MB, Khorana AA. Tissue Factor and VEGF Expression in Prostate Carcinoma: A Tissue Microarray Study. Cancer Invest 2009; 27:430-4. [DOI: 10.1080/07357900802527247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Nelson SM, Greer IA. The potential role of heparin in assisted conception. Hum Reprod Update 2008; 14:623-45. [DOI: 10.1093/humupd/dmn031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Harenberg J, Jörg I, Vukojevic Y, Mikus G, Weiss C. Anticoagulant effects of Idraparinux after termination of therapy for prevention of recurrent venous thromboembolism: observations from the van Gogh trials. Eur J Clin Pharmacol 2008; 64:555-63. [DOI: 10.1007/s00228-008-0463-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/14/2008] [Indexed: 11/29/2022]
|
16
|
Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC, Hostetter G, Harvey J, Taubman MB. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13:2870-5. [PMID: 17504985 DOI: 10.1158/1078-0432.ccr-06-2351] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Hemostatic activation is common in pancreatic cancer and may be linked to angiogenesis and venous thromboembolism. We investigated expression of tissue factor (TF), the prime initiator of coagulation, in noninvasive and invasive pancreatic neoplasia. We correlated TF expression with vascular endothelial growth factor (VEGF) expression, microvessel density, and venous thromboembolism in resected pancreatic cancer. EXPERIMENTAL DESIGN Tissue cores from a tri-institutional retrospective series of patients were used to build tissue microarrays. TF expression was graded semiquantitatively using immunohistochemistry in normal pancreas (n=10), intraductal papillary mucinous neoplasms (n=70), pancreatic intraepithelial neoplasia (n=40), and resected or metastatic pancreatic adenocarcinomas (n=130). RESULTS TF expression was observed in a majority of noninvasive and invasive pancreatic neoplasia, including 77% of pancreatic intraepithelial neoplasias, 91% of intraductal papillary mucinous neoplasms, and 89% of pancreatic cancers, but not in normal pancreas. Sixty-six of 122 resected pancreatic cancers (54%) were found to have high TF expression (defined as grade >or=2, the median score). Carcinomas with high TF expression were more likely to also express VEGF (80% versus 27% with low TF expression, P<0.0001) and had a higher median MVD (8 versus 5 per tissue core with low TF expression, P=0.01). Pancreatic cancer patients with high TF expression had a venous thromboembolism rate of 26.3% compared with 4.5% in patients with low TF expression (P=0.04). CONCLUSIONS TF expression occurs early in pancreatic neoplastic transformation and is associated with VEGF expression, increased microvessel density, and possibly clinical venous thromboembolism in pancreatic cancer. Prospective studies evaluating the role of TF in pancreatic cancer outcomes are warranted.
Collapse
Affiliation(s)
- Alok A Khorana
- James P. Wilmot Cancer Center, Department of Medicine, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|